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I..

ABSTRACT

This report summarizes the work accomplished since September 1, 1986 on Air Force

Office of Scientific Research Grant 86-0283. Work has been in progress in three different

areas: 1) Optical interconnections; 2) Neural networks; and 3) Optics and artificial intelli-

gence. Various administrative matters pertinent to the grant are also discussed.
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I. INTRODUCTION

This document contains a summary of the work accomplished under Grant AFOSR 83-

0166 during the time period September 1, 1986 through September 30, 1987. Section II

contains a summary of the work accomplished. This summary is supplemented by appen-

dices. Section III is devoted to various administrative matters pertinent to the grant.

II. WORK ACCOMPLISHED

(a) Optical Interconnections

The powerful interconnect abilities of optical beams have led to much optimism about

the possible roles for optics in solving interconnect problems at various levels of computer

architecture. It is already well established that fiber optics will play an important role in

enabling high-speed machine-to-machine communication. At lower levels of architecture,

e.g. module-to-module within a machine, board-to-board within a module, chip-to-chip on

a board, and gate-to-gate on a chip, the proper role for optical interconnections is not as

well established. One of the most important unanswered questions facing the field of

optical interconnects is how far down this hierarchy of levels of interconnects optics will

play a useful role.

We have examined the power requirements of optical interconnects at the gate-to-gate

and chip-to-chip levels. Our findings can be summarized roughly as follows. At the level

of gate-to-gate interconnects, optical interconnects require substantially more power than

electrical interconnects. The extra power required of an optical interconnect stems from U

two sources. First, the conversion of electrons to photons in a very good laser diode has . ..

about a 20-25 % overall power efficiency (i.e. approximately one photon is generated for ----- ..

every four or five electrons). Second, the lowest threshold laser diodes reported to date ,7, 7

require approximately one milliampere of current to reach threshold and have a bandgap of
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about 1.4 volts. Thus for any interconnect that can be accomplished electrically with less

than one milliwatt, there is a power disadvantage to optics. Typically at the gate-to-gate

level, the anticipated requirements to continuously charge and discharge an interconnect line

plus the input capacity of the destination gate to a reasonable threshold voltage (say 1 volt)

in a time of, for example, one nanosecond are considerably smaller than a milliampere.

However, at the chip-to-chip level, the conclusions are quite different. If the electrical line

is short enough and the bandwidth is low enough that the line can be unterminated, then the

electrical problem is primarily that of charging the relatively large capacitances of bonding

pads on the source and destination chips. In this case the electrical power required of the

interconnect is comparable with that required of an optical interconnect line. If the inter-

connect length and bandwidth lead to the requirement that the line be terminated, then the

power dissipation associated with the electrical line increases dramatically, and optics has a

distinct power advantage with respect to electronics. This advantage is even more dramatic

if the interconnect line has significant fan-out. See a more detailed discussion of power

issues in Appendix A, which is a preprint of a chapter on optical interconnects we have

written for a book on optical computing being edited by H.H. Arsenault.

A major conclusion is that a sufficient (but not necessary) condition for interest in

optical interconnects will be present whenever an electrical interconnect line must be termi-

nated by its characteristic impedance. The condition is not a necessary one because it does

not address the issues of mutual coupling, EMI, space requirements, and ground loop

elimination, any one of which might of itself lead to optics being the solution of choice,

regardless of any power disadvantage that might hold.

The calculations and assumptions behind these conclusions are presented in the Ph.D.

thesis of Raymond Kostuk, published in the Autumn of 1986 and available on request. We

are not attaching the thesis as an appendix to this report because of its large size (305

pages). The conclusions will be brought to the attention of the optics communities through

3
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the book chapter mentioned above and a chapter on optical interconnects now being written

by Dr. Kostuk for another book on optical computing.

The thesis of Raymond Kostuk also contained a large body of material on holographic

optical elements, as they pertain to the interconnect problem. Two papers by us have

appeared in Applied Optics on this subject, as discussed in Section It in more detail.

(b) Optical Neural Networks

The work undertaken jointly with Prof. Mitsuo Takeda of the University of Electro-

communication in Japan on computation using neural networks was published in Applied

Optics during the early months of this grant year. A reprint of this paper is attached as

Appendix B. Since that time our work has focused on two different aspects of the neural

computing problem. First, we have undertaken some basic studies of the convergence

properties of the Hopfield model, based on a novel mathematical approach - graph theory.

Each neuron can be regarded as a node in a directed graph, and each interconnection

between two neurons can be regarded as a weighted edge in the graph. It can be shown

that the Hopfield network in effect performs a local search for a minimum cut through the

graph. This is but one example of the new insights that can be gained from bringing the

power of graph theory to bear on neural network problems. The theory so developed is

applicable to both optical and non-optical neural networks. Appendix C contains a reprint

of a paper on our work that will appear in the Proceedings of the First International

Conference on Neural Networks (San Diego, June, 1987). Appendix D contains a

preprint of our paper to be presented at the IEEE Conference on Neural Information

Processing Systems, to be held in Boulder, Colorado, in November, 1987. An extended

version of Appendix C has been accepted for publication in the IEEE Transactions on

Information Theory after minor modifications.

4
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A second area of study in the neural network area is more practical and problem-

oriented in its nature. Recognizing that neural networks are best suited for so-called ran-

dom problems, we have been examining the problem of signature verification as one to

which neural net ideas might profitably be applied. No individual signs his signature twice

in exactly the same way. Therefore it is impossible to store all versions of an individual's

signature, nor is it possible to store all the forgeries of that signature. The approach under

investigation, therefore, is to train a neural net with correct and incorrect signatures, and to

assess its performance in identifying forgeries. A three level neural network is being sim-

ulatnd, with a layer of hidden neurons. Important questions to be answered include the

dependence of net performance on the number of neurons used, the number of hidden

layers used, and the number of signatures used in training. The signature verification

problem is one of particular interest from the point-of-view of optical neural nets, because

the inputs are inherently in optical form.

Effective January 1, 1987, the simulations involved in the signature verification work

were transferred to other funding.

(c) Optics and Artificial Intelligence

During the current grant year we initiated a new effort which reviewed the field of

optical processing and artificial intelligence, with the aim of finding areas that might be

particularly attractive for future investigation. This study was undertaken at no cost to the

grant, since the student involved had other support for the duration of this academic year.

The summary examined work under way at the University of Colorado, Carnegie Mellon

University, Honeywell, Johns Hopkins University, the University of Southern California,

and the BDM corporation. This ongoing work in optical approaches to Al was reviewed in

order to identify what we believe are the most promising areas to investigate in this field.

The conclusion of this investigation is summarized as follows. We believe the most

5
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promising and unique avenue for investigation in this area is an attempt to perform predi-

cate calculus optically, possibly using matrix-vector multipliers. Predicate calculus is by

far the most widely used artificial intelligence tool in current AI software systems.

Furthermore, to the best of our knowledge, optical implementations of predicate calculus

are not now being investigated in other laboratories. Work at the University of Colorado is

focusing on optical implementations of propositional calculus, while work at Carnegie

Mellon University is aimed at using matrix-vector multipliers for associative retrieval. The

work we propose is different from of both of these efforts. We hope to pursue this issue

beyond the present stage in a new grant from AFOSR.

III. ADMINISTRATIVE MATTERS

(a) Publications

Publications submitted or appearing on work fully or substantially supported by the

grant during the past year are as follows:

1. M. Takeda and J.W. Goodman, "Neural networks and computing: number representa-

tions and programming complexity", Applied Optics, Vol. 25, pp. 3033-3046 (1986).

2. P. Idell and J.W. Goodman, "Design of optical imaging concentrators for partially

coherent light: absolute encircled energy criterion", J. Opt. Soc. Am. A, Vol. 3, pp.

942-953 (1986).

3. R.K. Kostuk, J.W. Goodman, and L. Hesselink, "Volume reflection holograms with

multiple gratings: an experimental evaluation", Applied Optics, Vol. 25, pp. 4362-

4369 (1986).
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4. M. Nazarathy and J.W. Goodman, "Systolic lattice processing by optical coupled-mode

device arrays", Optical Engineering, Vol. 26, No. 3, pp. 256-263 (1987).

5. R.K. Kostuk, J.W. Goodman, and L. Hesselink, "Design considerations for holo-

graphic optical interconnections", Applied Optics (Accepted for publication).

6. R.K. Kostuk, J.W. Goodman, L. Hesselink, "Volume reflection holograms with multi-

ple gratings: an experimental and theoretical evaluation", Applied Optics, Vol. 25, pp.

4362-4369 (1986).

7. J. Bruck and J.W. Goodman," A generalized convergence theorem for neural networks

and its applications in combinatorial optimization", Proceedings of the First Interna-

tional Conference on Neural Networks (in press).

8. J. Bruck and J.W. Goodman, A generalized convergence theorem for neural networks

and its application to combinatorial optimization", submitted to IEEE Trans. on Info

Theory (1987). Accepted for publication after revision.

9. J. Bruck and J.W. Goodman, "On the power of neural networks for solving hard prob-

lems", to appear in the Proceedings of the IEEE Conference on Neural Information

Processing Systems, Boulder, Colorado, November 1987.

10. J.W. Goodman, "Optics as an Interconnect Technology", to be published in 1988 as a

chapter of a book on optical computing, edited by H.H. Arsenault.

(b) Presentations

Oral presentations on work supported by the grant include the following:

1. R.K. Kostuk, "Desiga considerations for holographic optical interconnections",

presented at the Annual Meeting of the Optical Society of America, Seattle,

Washington, October 1986.
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2. J.W. Goodman. "Optical computing: an overview", presented at the OSA Topical

Meeting on Optical Computing, Incline Village, Nevada, March 1987 (invited paper).

3. J.W. Goodman, "Optical communications and computing", presented at the biannual

meeting of the Israel Section of the IEEE, Tel Aviv, Israel, April 1987 (plenary paper).

4. J.W. Goodman, "Optics as an interconnect technology", Workshop on GaAs on Si,

Marina-del-Rey, CA, June 1987

5. J. Bruck, "A generalized convergence theorem for neural networks and its applications

in combinatorial optimization", First International Conference on Neural Networks,

San Diego, CA June 1987.

(c) Students Supported by the Grant

The students supported by the grant during part or all the past year were Jehosua

Bruck, Raymond Kostuk, and Dorothy Mighell. R. Kostuk received the Ph.D. in late

1986 and is now a member of the faculty at the Optical Sciences Center of the University of

Arizona.

(d) Honors received by the Principle Investigator

During the past grant year, Dr. Goodman received the following honors:

1. Recipient, 1987 IEEE Education Medal

2. Elected Member of the National Academy of Engineering

3. Recipient of the 1987 Dennis Gabor Award of the SPIE

4. Elected President, International Commission for Optics.
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OPTICS AS AN INTERCONNECT TECHNOLOGY

Joseph W. Goodman

Department of Electrical Engineering

Stanford University

Stanford, California 94305

1. Introduction

a

The hardware portion of a digital computing system can be regarded in most general terms

as a collection of many nonlinear elements within which signals must interact (the gates),

together with interconnections between those elements, or between groups of such

elements. The groups of elements can be of various sizes and complexities, depending on

the level of architecture of concern. The function of the interconnections may be to

communicate information to or from processing subunits, memories subunits, or users,or

to transfer control signals or program segments to hardware subunits of various kinds.

The variety of different kinds of interconnect problems can be appreciated in the context of

a listing of several levels of computer architecture within which interconnections play a

fundamental role. Starting at the highest levels of architecture and working downward to

lower levels, we have:

Machine-to-machine interconnections.. The interconnections are required to

transfer messages of various kinds, including electronic mail, files, and



information from shared databases. The distances involved typically vary

from several meters to a few kilometers.

Processor-to-processor interconnections. In a multiprocessor environment

within a single machine, interconnections are required between different

processors, and between processors and certain shared resources, such as

memory. In many cases it is necessary to change the interconnect pattern

dynamically in time. The distances involved may vary from as little as a few

centimeters to a few meters.

Board-to-board interconnections. Within a single processing unit, there

usually exist several electronic boards. These boards must interchange

information, and usually do so by means of some form of data bus. The

distances involved can vary from a very few centimeters to perhaps as much

as one meter.

Chip-to-chip interconnections. On a single board there typically exists a

multitude of integrated circuit chips, many of which must communicate with

one another. The communication distances involved range from of the order

of 0.1 centimeter to as much as a few tens of centimeters. A special case is

that of wafer-level interconnection, in which various chips on a single wafer

must communicate.

Intra-chip interconnections. A single integrated circuit chip typically

contains thousands of interconnections between gates and between different

functional subunits of the chip. In addition, a substantial system of

interconnections exists between the chip itself and the pins that connect it to

2
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the outside world. This intrachip level we regard as the lowest level of the

interconnection hierarchy. The distances involved range from a few

micrometers to at most a very few centimeters.

An examination of the above hierarchy of interconnect problems reveals that optics is now

penetrating the highest levels. Machine-to-machine communication via optical fibers is

now a commercial reality, and serious attempts are in progress to bring optics to the next

lower level of architecture, processor-to-processor interconnection within a single machine.

Research is also under way at the chip-to-chip level. How far down this hierarchy of

interconnection problems optics will eventually penetrate is a subject for speculation.

It is the goal of this chapter to examine the properties of optical signals that make them

attractive as an interconnect technology. Some speculation as to possible future

developments will also be included. Several other discussions of this subject are available

in the literature 1,2,3,4.

2. Why Use Optics For Interconnections?

4

The physical properties desired of an interconnect technology are markedly different (and

indeed in many respects quite the opposite of) the physical properties required of a gate

technology. An interconnect technology should ideally have the property that interactions

between different interconnections are minimum or non-existent. Thus signals flowing

through one interconnection should not couple to or otherwise influence signals flowing in

another interconnection. There are fundamental differences between electrons and photons

that are pertinent in this regard. Several points-of-view are possible in explaining these

differences. From the most basic perspective, electrons are members of the class of

particles known as fermions, while photons belong to the class known as bosons.

" 3



According to the Pauli exclusion principal, no two fermions can occupy the same cell of

phase space, whereas any number of bosons can share a common cell. This fact can be

viewed as implying that electrons must fundamentally suffer mutual interactions that

prevent violation of the exclusion principal, while no such interactions need exist for

photons.

A somewhat more straightforward point-of-view rests on the fact that electrons are charged

particles while photons carry no charge. Moving electrons thus generate stray electric and

magnetic fields, which in turn couple signals into proximate conducting lines. No such

fundamental coupling mechanism exists for streams of photons, although from the practical

point-of-view, some level of coupling can arise through optical scattering if care is not

taken.

Regardless of the point-of-view, there is a fundamental conclusion that emerges from the

discussion: optical interconnections potentially offer a freedom from mutual coupling

effects not afforded by conventional electronic interconnects. This potential advantage of

optics becomes more and more important as the bandwidth of the desired interconnections

increases, for the strength of mutual coupling associated with electrical interconnects is

proportional to the frequency of the signals propagating on the interconnect lines.

A second potential advantage of optical interconnections is an extra flexibility of routing.

Electrical interconnect paths can not cross, and therefore must be routed over C: under one

another through multiple interconnect layers. Optical interconnections can ind-:.d be routed

through one another without any deleterious effects. Unlike electrical interconnect paths,

which must reside near a ground plane to assure that stray electric fields t:e properly

terminated, optical interconnects need not remain near a ground plane, and in, ced can be

routed in a flexible manner through three-dimensional space.

4



A third advantage of optical interconnects rests on a partial freedom from certain capacitive

loading effects. For an electrical interconnection, the delivery of signals to a number of

different devices or subunits of a system requires that the interconnect line drive a total

capacitance consisting of the capacitance of the interconnect line plus the capacitances of all

the devices or subsystems attached to that line. The capacitance of the line itself is

proportional to the length of the interconnection. For both optical and electrical

interconnects, the basic signal-carrying streams (comprised of photons and electrons,

respectively) must be divided between the various termination points where information is

to be delivered. However, in the electrical case, if the connection is long enough, a

significant number of electrons are diverted to charging the capacitance of the interconnect

line, and are therefore not available for charging the capacitances of the devices at the

termination points. No such line charging phenomenon is present for an optical

interconnection, although the equivalent of a resistive loss is present if the optical

interconnect line has significant absorption or scattering, or if the electrical-to-optical or

optical-to-electrical converters (sources and detectors, respectively) have low quantum

efficiency.

A fourth possible advantage of optics rests on its potential for supplying dynamically

changeable interconnect devices. Since photon-based interconnects require no mechanical

contacts, interconnect re-routing can be accomplished simply by changing directions of

optical beams. While much work remains to realize dynamic routing elements with

interestingly large numbers of connections and speeds of reconfiguration, nonetheless the

potential for optics in this role is intriguing 5,6.
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3. Types of Optical Interconnections

An optical interconnection performs the task of delivering modulated light generated at a

source to a detector where the modulation is recovered. The interconnection should be

efficient in that as many as possible of the available photons should be delivered to the

desired destination. In addition, the interconnection should be as free as possible from

dispersion that might limit the bandwidth of the modulation recoverable at the receiver.

There are in fact a variety of optical methods that could be used as the basis for realization

of optical interconnections. In this section we briefly describe the various possibilities.

The first method for realizing optical interconnections that comes to mind is by means of

optical fibers, as indicated conceptually in Fig. 1. Fiber-optic technology is having

Source Detector

Chip 1 Chip 2

Figure 1. Chip-to-chip interconnect with optical fibers

enormous impact on telephone and data communications, particularly over distances of

several to many kilometers. Commercial availability of fiber-optic networks is also

beginning to be seen, used for connecting a number of digital computers with one another

and with shared peripherals. It seems natural therefore to consider the possible use of fibers

at other high levels of computer architecture. Optical fibers have many of the properties we

might desire of an interconnect technology. They efficiently deliver photons coupled into

the input to detectors at the output. Their losses are so low at lengths of a kilometer and less

p6
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(the distances of main interest here) that attenuation by the fibers themselves can be

neglected. In addition, dispersion over such short distances is usually negligible at

bandwidths of current interest. The above comments apply for both single-mode and multi-

mode fibers, so there seems little motivation to utilize the more complicated and expensive

single-mode technology in these applications when multi-mode solutions should be

perfectly adequate. However, optical fibers are not necessarily the ideal solution for

interconnect problems at all levels. In particular, at the lowest levels, i.e. intrachip and

very nearby chip-to-chip interconnections, the problems of bending and looping fibers

become severe, due to radiation losses induced by bending. For such problems, it might

be argued that fibers are too much like wires, requiring a material path for the

interconnection between every two points, and rather inflexible paths at that.

An alternative approach that may be applicable to intrachip communications is the use of

integrated optic technology, illustrated in Fig. 2. This approach rests on the use of

Chip 1 Chip 2

Substrate Indiffused waveguide

Figure 2 Chip-to-chip interconnect using integrated-optic waveguides

waveguides that are integrated in a planar substrate. Most common is the creation of

waveguides in lithium niobate by indiffusion of titanium channels, but similar guides can

be made by sputtering glass on SiO 2 . While the losses associated with such waveguides

are orders of magnitude higher than those associated with optical fibers, nonetheless the

distances for intrachip communication are so short that these losses may not be of great

7



importance. However, losses, together with the problems associated with realizing large

integrated-optic substrates, appear to rule out the use of integrated optics for levels of

interconnection higher than intrachip or very nearby interchip.

An important practical problem with the integrated-optic approach is the coupling of light

in.o and out of the waveguides. Butt coupling of light into such waveguides is common,

and applicable when the source is a discrete device. Likewise end-to-end juxtaposition of a

discrete detector and the waveguide output can serve to deliver the optical signals to the

photosensitive surface of the detector.

In some applications, it may be desirable to place a passive waveguide substrate over an

active integrated circuit, in which detectors and/or sources have been integrated. The

problem of efficient coupling into and out of the waveguides is more difficult in this case,

requiring the use of prism or grating couplers.

Of the various imaginable ways for using optics for interconnects,perhaps the simplest

method from the conceptual point-of-view is that of free-space unfocused broadcast,

shown in Fig. 3. For this method, a modulated optical signal, generated, for example, by a

5--
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Source- m:PM

Chip 1 Chip 2 Integrated

Photodetectors

Figure 3. Free-space unfocused broadcast
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laser diode, is transmitted in a broad and unfocused beam, portions of which fall upon one

or more detectors. If the interconnection is from one source to a single receiver, then the

connection is one-to-one. On the other hand, if the same signal must be delivered

simultaneously to several receiving points, then the interconnection is said to have fan-out

and to be one-to-many. The chief drawback of this approach to interconnection is the very

low degree of efficiency with which photons are utilized. The fact that the light has been

spread over a large area implies that only a small fraction of the optical power will be

intercepted by any one detector. Since in most applications the electrons generated by

photons at the detector must charge a capacitance on a gate, loss of photons implies that

longer integration times will be required for the gate threshold voltage to be reached. Thus

the speed capability of the circuit will be less than it could be with more efficient delivery of

photons. A further disadvantage of this approach in many applications is the lack of

parallelism in communication capability. Since all detectors receive all the signals

transmitted by any one source, the communication channel realized by this approach must

be time-shared. Only one source can be active at one time, thus eliminating all potential for

parallelism. In spite of the drawbacks of this type of interconnection, it has been used in at

least one experimental computer system as the basis for a common bus 7.

The final approach to be discussed can be called free-space focused interconnection, or

more simply, imaging interconnections., as illustrated in Fig. 4. This method differs from

that discussed above in that rather general optical focusing elements are used to place nearly

all the available light onto the detector sites where it is required. The focusing elements

generally must be realized by means of holography, and are referred to as holographic

optical elements. Using such elements, a single source can be imaged onto one or more

9
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/ eflective holographic

Chip 1 Chip 2 Integrated
Photodetectors

Figure 4. Imaging interconnections.

photodetectors with high efficiency, eliminating much of the waste of photons present in

the unfocused case. The practical limits to efficiency depend on the amount of fan-out

required, the material from which the hologram is made, and the geometry required. With

the use of dichromated gelatin as a recording material, simple reflection holograms capable

of imaging one source onto one detector using visible light can be made with efficiencies in

excess of 99%. Less is known about making good holographic optical elements that work

in the near infrared, where high-speed optical communication technology is prevalent (a

recent reference is available on this subject 8). Note that the use of of imaging

interconnections reserves the possibility of parallelism in the interconnect network. One

source can be imaged onto one photodetector, while another independent source is imaged

onto another different photodetector. Each such channel can then operate independently. If

holographic optical elements are to be used, it should be noted that the Bragg selectivity of

a thick transmission grating is far superior to that of a thick reflection grating. Therefore,

when several parallel interconnects are to be made independently, a transmission geometry

is preferable to a reflection geometry.

10



4. Some Specific Properties of Optical Interconnections

In a previous section, we have discussed in a general way the differences that exist between

optical and electronic interconnections, as well as the properties of optics that make it

attractive as the basis for an interconnect technology. In this section we will discuss some

more specific properties of optical interconnections, particularly properties that strongly

influence the practicality of such techniques in real applications.

If optical interconnects are to be used to interconnect two electronic subunits at some level

of architecture, then signals that are originally in electronic form must be converted to

optical form, and following reception at the destination, they must be converted back into

4 electronic form. Each conversion step has a finite efficiency, and it is important to quantify

the impacts of the associated losses. It should be kept in mind that in most applications the

termination of the inttrconnect link will be a capacitive load that must be charged to the

threshold voltage of the logic devices that follow. To reach the threshold voltage, a certain

minimum amount of charge must be deposited at the terminating device.

A flow of electrons over an electronic connection must be mimicked by a flow of photons

over an optical connection. Thus a flow of current in the electronic case is analogously

replaced by a flow of power in the optical case. It is, of course, necessary to take into

account the finite efficiency of the optical source and the finite quantum efficiency of the

optical detector in making any comparison.

Detector efficiency

In the case of a communication link at 800 nm wavelength, we can assume a 80% quantum

efficiency for a silicon p-i-n photodiode, corresponding to a responsivity of approximately
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0.5 amps/watt. Avalanche photodiodes have inherent gain, and as a consequence they are

better converters of optical power into electrical current. Typical values of responsivity for

such detectors are 50 to 100 Amps/Watt. However, we intentionally exclude avalanche

photodiodes from consideration here, for two reasons. First, and foremost, we wish to

compare optical and electronic interconnections without any gain mechanism present.

Obviously both types of interconnections can be followed by devices or circuits with gain.

Comparison of the two technologies then becomes a strong function of the detailed

character of the gain mechanism, opening a Pandora's box of details that are beyond our

central purpose here. Secondly, once gain is allowed at the end of the interconnection, the

total power requirements no longer arise only at the transmitting end of the link. Rather,

power is supplied at the receiving end as well, further complicating the comparison. It

should also be mentioned that avalanche photodiodes require higher voltages than p-i-n

diodes, and have greater temperature sensitivities, making their use in practice more

complex than p-i-n diodes.

Source efficiency

The efficiency considerations discussed above apply only to photon-to-electron conversion

at the receiving end of the interconnection. Equally important are the efficiency

considerations for the initial electron-to-photon conversion at the transmitting end of the

link.

Efficiencies in the range of 1% to 2% are typical of LED's operating in the near infrared.

Such low efficiencies make it difficult for an optical interconnect to compete on a power

basis with an electrical link. Therefore higher efficiency laser sources are of greater

interest.

12
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High efficiencies are realized in laser diodes only well above lasing threshold. Below

threshold, a semiconductor laser source behaves essentially as an LED, and as such

exhibits a relatively poor overall power efficiency. When using a laser diode, there exists a

certain minimum amount of electrical power required to bring the source to threshold, and

that electrical power is essentially wasted, since it generates very few photons. Any

comparison of electrical and optical interconnects must ultimately take account of this

minimum required threshold current. When an electrical interconnect requires less power

than that needed to bring a laser diode to threshold, optics can not compete with the

electronic solution. On the other hand, when the interconnect is characterized by a high

degree of fan-out, the inefficiency associated with the finite laser threshold can be

amortized over a large number of connections, making the optical interconnect more

attractive as a solution.

As a typical state-of-the-art laser diode attractive for interconnect applications, we consider

the GaAs single quantum well laser recently described in the literature9 . The threshold

current for this laser is just under 1 mA, and the required applied voltage is 1.4 volts. Thus

to reach threshold a commitment of 1.4 mW of electrical power is required. In the middle

of the lasing range, 5 mA of current are required to produce approximately 1.5 mW of

output optical power. Thus the efficiency of the device in converting electrical to optical

power is 21%. Efficiencies in the range of 20 to 25% are typical of good semiconductor

lasers with outputs in the range of a few mW. Higher power semiconductor lasers can

achieve higher efficiencies, even in excess of 50%. In our considerations, we will use a

25% efficiency number.

13
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Interconnect efficiency

Finally, considerations of efficiency can not ignore the losses associated with the optical

path from transmitter to receiver. These losses vary dramatically, depending on which of

the various schemes discussed in the previous section are chosen for the optical

interconnect. Most efficient would be a fiber-optic link, which for the geometries to which

such technology can be applied and for the short distances of interest here, will suffer

primarily from coupling losses at the input and output of the fiber. Losses of only a db or

two should be possible. Least efficient will be the free-space broadcast schemes, for which

the losses could easily reach 60 db in some applications (broadcast to a 10 gm x 10 gtm

detector on a I cm x 1 cm chip). Holographic distribution systems exhibit losses of 3 db to

10 db for bleached silver-halide-based reflection holograms, and considerably less loss for

dichromated-gelatin-based reflection elements. Larger losses can be expected if the light

from the optical source overfills the holographic optical element. Such would be the case

for an LED source, but not necessarily for a semiconductor laser source.

5. Power Requirements for Optical Interconnections 10,11

An important consideration for any ii terconnect line is the power required to drive that line,

and the devices attached to it, at a given bit rate. It is instructive to compare conventional

electronic interconnections with optical interconnections from this point-of-view, for some

fundamental conclusions result. In the electrical case, the power requirements depend on

whether the interconnect line is terminated or unterminated. Termination of a line is

required if reflections from the end of the line pose a problem; it results in a substantially

greater amount of power dissipation than if no termination is used. For an unterminated line

a major portion of the power requirement arises from the need to charge the capacitance of

the line and the capacitance of the device or devices attached to the line. Such power is

14



entirely reactive in nature. This conclusion changes when the bit rates become high enough,

due to skin-effect losses in the conductors.

In the optical case, it is assumed that the same device that were driven by the electrical

interconnect line are now driven by the output of the detector at the end of the line. The

capacitance of those devices is unchanged, but the major power requirement now stems

from the inefficiencies of the electron-to-photon and photon-to-electron conversion

processes. These inefficiencies constitute real power loss, and therefore the drive power

requirements are no longer reactive.

A rather simple example is revealing. Consider first the case of an electrical

interconnection. Suppose that the electrical interconnect line is unterminated, and skin-

effect losses are negligible. The drive power requirements in the electrical case then consist

primarily of the reactive power needed to charge to the threshold logic voltage the

capacitance of the interconnect line itself and the device capacitances attached to the line.

The reactive power P required to charge a capacitance C to a voltage threshold level V in a

fixed time r is

P =CV2 (1)
2,r

Hence for a fixed voltage threshold level and a fixed charging time, the required power is

directly proportional to the capacitance that must be charged. Let the capacitance of the

device attached to both of the lines be represented by Cd and the capacitance of the electrical

interconnect line itself be C1 . The reactive power Pe required for the electrical interconnect

line is then

15



I
(C! +Cd)V 2  (2)

Consider next the case of an equivalent optical interconnection. A real electrical power Peo

must be supplied to the optical source in order to ultimately charge the same device

capacitance, as well as the detector capacitance Cd. We calculate the required Peo in the

following manner. First, since by definition capacitance is the amount of charge stored for

a given applied voltage, the charge required at the end of the interconnection in order to

bring the detector capacitance and device capacitance to voltage V is

Q = V (CD + Cd). (3)

To deposit that charge in time T requires a current

(= CD + C (4)

Let the responsivity of the detector be R, in which case the optical power required to

generate the current above is.

Po = V( CD + Cd) (5)

Finally, taking account of the finite power efficiency Tls of the source, the total electrical

power required to drive the optical link is

Peo = V( CD + Cd (6)
sR'r(6
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Note that different methods were required to calculate Pe and Peo due to the fact that in the

former case we were dealing with a constant voltage source applied to the line, whereas in

the optical case the capacitances are charged by a constant current source.

It is now possible to compare the powers required of the two technologies. The power

required of the optical link will be less than the power required of the electrical link when

Peo < Pe; i.e. when

CD + Cd < (C! + Cd)V (7)

lisk 2

or equivalently when the electrical line capacitance satisfies

C1 >2 C D + C d  Cd.  (8)
VrsR.

If we take the detector responsivity to be 0.5 watts/amp, and the laser efficiency to be 25%,

the optical link will be superior to the electrical link whenever the electrical line capacitance

satisfies

16C > V(CD + Cd) - Cd. (9)

Note that the higher the threshold voltage required by the devices, the more favorable the

optical link becomes. Finally it should be noted that in the chip-to-chip communication

*, problem, the electrical interconnection is usually accomplished via bonding pads at each

end of the line. The capacitances of the bonding pads are very large compared with the

capacitances of a gate, and hence in this case the bonding pad capacitances should replace

the gate capacitance when calculating the required electrical power.

17
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The power requirement comparison above is, in a rather hidden way, intrinsically

connected with the issue of the relative isolation of two adjacent interconnections. For the

case of an electrical interconnection, a high degree of isolation can be achieved if the

conducting lines are kept very close to a ground plane. Thus if the conducting line is

separated from a ground plane by a thin dielectric layer, or if it is sandwiched between two

ground planes with thin dielectric layers providing separation, the isolation of the line

dramatically improves. However, accompanying this increased isolation there comes

fundamentally an increase in the line capacitance, and therefore a greater power requirement

for the electrical interconnection. Improved isolation comes from the more effective

termination of electric field lines on the conducting ground plane or planes, resulting in less

stray capacitance between lines. In turn, the increased number of field lines terminating on

the ground plane implies that the line itself has a greater ability to store charge when a fixed

voltage is applied, and therefore a greater inherent capacitance. Thus there is a direct trade-

off between isolation between lines and the electrical power required to drive those lines.

No such tradeoff exists in the case of optical interconnections. High isolation between

lines is inherently provided, with no direct cost (other than the fixed factor arising from the

imperfect laser and detector quantum efficiencies) in terms of increased driving power.

Much of the above discussion has assumed that the electrical interconnect line is not long

enough and the bandwidth not wide enough to require termination for suppression of

reflections. In the event that electrical termination is required, the electrical drive power

requirement increases appreciably. If the termination is perfectly matched to the

characteristic impedance Ro of the line, then the power dissipation is

1 V2
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It can now be seen that an optical interconnection will require less power than an electrical

interconnection when

CD +Cd I VD+ < (12)

Note that this result is independent of length for the case of lossless optical and electrical

interconnects.

We defer until section 7 a more specific comparison of the power requirements for electrical

and optical interconnects.

6. Fan-in and Fan-out Properties of Optical Interconnections 12

An interconnection is said to have an N-fold fan-out if it provides a path from a single

source of information to N different destinations. Whether the interconnections are

electronic or optical, at each of the N destinations there will usually be a device capacitance

that must be charged by the electrons delivered or generated by the interconnection. If N-

fold fan-out is present, then the electrons or photons must be divided at least N ways (more

than N ways if capacitive charging of the electronic lines or losses associated with the

optical lines are considered) This fact implies that the time required to charge one device

capacitance will be approximately N times as long in the presence of N-fold fan out as in

the absence of fan-out. This same conclusion holds whether the interconnect paths are

provided by electrons or by photons. The difference between optical and electronic

interconnects with regard to fan-out resides only in the capacitances and losses associated
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with the interconnect lines themselves. Low-loss optical interconnect lines do not provide

the equivalent of capacitive or resistive effects associated with electronic lines.

An interconnection is said to have N-fold fan-in if it provides simultaneous paths from N

different sources of information to a single destination. In this case, a single destination

device capacitance must be charged by the N streams of electrons delivered or generated by

the interconnections. If the interconnections are electronic, one source will appear to

another source as a resistive path to ground, and if the resistance of such paths is

sufficiently low, then a portion of the electrons delivered from any one source to the

destination device may be diverted to ground through those source resistances. In fact, if

the sources all have internal series resistance Rs, and if the load to which power is to be

delivered has resistance Rs , then it can be shown that the fraction of power delivered by
1one source to the load, in the presence of N-1 other sources, is NP of the power delivered

N-1
by that source. The fraction V of the delivered power is dissipated in the internal

resistances of the N-I other sources.

In the optical case, a similar effect is observed as a consequence of fan-in. A basic optical

fact, derivable from the laws of thermodynamics and often referred to as the constant

brightness theorem 13, states that no passive linear optical system can increase the

brightness (watts per steradian per unit area) of an optical beam. This theorem implies that

any attempt to superimpose mutually incoherent beams of light in such a way that the

resultant brightness would be increased must inevitably fail. More specifically, the optical

system devised to accomplish this goal must have associated with it some form of loss

. mechanism that will prevent the brightness from being increased. A good example is

afforded by a holographic optical element designed to merge two mutually incoherent
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beams of light into a single beam having the same cross-sectional area and angular

divergence as the original beams. Figure 5(a) shows the recording geometry that might be

01 0 R

0 2

R (a) (b)

Figure 5. Holographic beam combiner. (a) Recording. (b) Utilization.

devised to make such an element. The hologram is recorded using two object beams and a

single reference beam. Figure 5 (b) shows the geometry in which such an element would

be used for fan-in. Two incident beams, each coinciding in direction with one of the

original object beams, are merged into a single beam traveling in the direction of the

original reference beam. It can be shown that such an element must have associated with it

at least a 50% loss, arising from the fact that at least 50% of the light in each of the incident

beams remains in the zero order of the holographic optical element. In this way the

constant brightness theorem is satisfied. More generally, if an element is made to merge N

different optical beams into a single beam having the same cross-sectional area and angular

divergence as its component beams, then at most 1/N th of the light in each beam can be

placed into the desired output beam. However, lossless fan-in can in principle be

accomplished if

2022 NAlI 2 (12)



where A I and A2 are the cross-sectional areas of a single input beam and the output beam,

respectively, while 212 and f022 are the solid angles subtended by one of the N input

beams and the output beam, respectively.

If the two beams to be merged are mutually coherent, then the predictions of the constant

brightness theorem must be used with care. It has been shown 14 that the merging of two

single-mode mutually coherent beams in a waveguide Y-junction into a single output

waveguide can yield an efficiency anywhere between 0% (input waveguides driven out of

phase) and 100% (input waveguides driven in phase). If the phase difference between the

two coherent beams is entirely random, then each input beam is coupled into the output

waveguide with an efficiency of 50%, consistent with the constant brightness theorem, the

rest of the light being lost through radiation modes. Thus average power per output mode

obeys the constant brightness theorem.

It should be re-emphasized that in the incoherent case the losses mentioned previously can

be avoided if the resultant beam is allowed to have a sufficiently larger cross sectional area

or angular divergence than the component beams. Such is usually the case if the fan-in

takes place on a detector which is capable of accepting radiation from a larger solid angle

than that occupied by any one of the beams. In such a case, no attempt is made to force the

beams to coincide in their directions of propagation.

7. Power Comparisons for Example Electrical and Optical Interconnects

The power required to drive an interconnect line is one of several characteristics that

important in deciding the superiority of one interconnect technology over another. Note

that drive power alone is not a complete characterization of an interconnect problem, for it

22
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ignores other important characteristics, such as mutual coupling between adjacent

interconnect lines. To understand the power requirements is to understand but one of the

dimensions in a multidimensional comparison space, albeit a very important dimension.

In this section we compare the power required for interconnects at two levels of

architecture, focusing on the gate-to-gate interconnect problem, and the chip-to-chip

interconnect problem. In the latter case, both unterminated and terminated electrical

interconnect lines are considered.

Power Requirements in Gate-to-Gate Interconnects

We first consider the simplest of interconnection problems, illustrated in Fig. 6. Gates on a

5Interconnect

Chip

Figure 6. Gate to gate interconnect

single silicon chips are to be interconnected by a single interconnection line. In one case

the interconnection will be accomplished by conventional electronic means, while in the

other the interconnection will be accomplished by optical means.

In both the electronic and the optical interconnect cases, the interconnect must supply

sufficient electrical charge in a clock period to charge the capacitance Cg of a destination

gate to its threshold voltage V. In the process, an electrical interconnect must supply

23
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sufficient reactive power to charge to that same voltage not only the capacitance of the

destination gate, but also the capacitance CI of the interconnect line itself, as well as the

capacitance Cg of the source gate. Thus the total capacitance to be charged is

CTOT = 2Cg + Cl. (13)

The capacitance of a metal plate of area A separated from an infinite ground plane by a

dielectric of relative dielectric constant er and thickness d is

C-- (14)

where o = 8.854 x 10-4 F/cm is the dielectric constant of free space. Considering first the

gates, projected VLSI device lengths and oxide layer thicknesses are taken to be 0.5 and

0.02 gm, respectively. An SiO 2 oxide is assumed (Er = 3.9). The resulting gate

capacitance is Cg = 50 fF. Considering the interconnection line itself, C1 is given by

C rEowl (15)

where I is the line length, w the line width, and h the height of the line above the ground

plane. The width/height ratio is restricted by fringing field effects to a minimum value of

about 2. Considering a typical length of the interconnect to be about I mm, the line

capacitance is 70 fF. Thus the total capacitance of the gate-to-gate link is CTOT = 170 fF.

Looking to the future, we assume for the purpose of illustration that the gate capacitance

must be charged in 1 nsec (implying a data rate of 1 Gb/s). Assuming a 1 volt gate

threshold, Eq. (1) implies that the reactive power to charge the gate in 1 nsec is

I Pe 85 JIW (16)
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Calculation of the power required to solve this same interconnect problem using optics

proceeds as follows. In this case we assume that a laser is driven by a current source, the

optical power generated by that laser is coupled into a waveguide with perfect efficiency,

and the optical signal is delivered without loss to a detector having a responsivity of 0.5

A/W. The detector is taken to be 2 gm thick and to be 25 ptm on a side, yielding a detector

capacitance of 33 F. Thus the combined capacity Ct of the parallel detector and gate

capacitances is 83 F. The laser is assumed to have an overall power efficiency of 25%.

To reach a 1 volt threshold on a capacitance of 83 fF in 1 nanosecond requires a charging

current (i = -) of 83 tA. The responsivity of 0.5 A/W leads to a required optical power

of 166 ptW at the detector. The 25% source efficiency in turn requires an electrical drive

power of approximately 660 p.W at the beginning of the link. Thus power required of the

electro-optic link is Peo = 660 mW.

The power calculated above is actually an underestimate of what would be required in

practice, even for a lossless optical interconnect line. The reason lies in our neglect of the

fact that, to achieve lasing action in the optical source, which is required for high overall

efficiency, a certain minimum threshold current is required. As discussed previously, the

smallest threshold currents for sources currently available commercially are of the order of

I ma. Following the example presented earlier in connection with reference #9, the

electrical power required to drive the optical link is modestly larger than the threshold

power of 1.4 mW. Future improvements of laser devices could drive this number lower,

but probably not be more than a factor of 2. Since we are looking to the future here, we

assume a minimum electrical drive power of 1 mW. Hence, we use in all future

comparisons a drive power required of the electro-optic link given by
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P eo = I1mW. (17)

We see from the above considerations that, for the parameters assumed in this example,

the optical link is not competitive with the electrical link at the gate-to-gate level assuming

that drive power is the determining factor. This conclusion is likely to be true in general at

this lowest level of architecture. Such is not necessarily so at the chip-to-chip level and

higher, as we shall now see.

Power Requirements in Chip-to-Chip Interconnects

As illustrated in Fig. 7, in the electrical case the interconnection line must be attached to

Chip 1 Chip 2

Substrate

Figure 7. Chip to chip electrical interconnect
.5%

bonding pads on each of the two chips. We initially consider the case of an unterminated

electrical interconnect line. To minimize propagation delays, the bonding pad is driven by a

series of gates, with gate capacitances gradually increased until the device capacitance is

comparable to that of a bonding pad. A current pulse from the driving logic element must

be capable of charging capacitances of these larger gates, the bonding pads at both ends of

the line, the line itself, and the destination gate. The total capacitance to be charged is thus

Ct 2Cg + 2Cb + C (18)
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where Cb is the capacitance of a bonding pad, Cg is the capacitance of a gate, and C is the

capacitance of the metallic interconnect line. The gate capacitances have been discussed in

the previous section, and again are taken to be 50 F.

Considering the bonding pads, for a pad area of 100 pm2, and the same SiO2 dielectric

layer assumed previously, the bonding pad capacitance is about 0.4 pF. The line

connecting the bonding pads on the two chips is is assumed to be 25 pm wide, 500 pm

above the ground plane, and about 1 cm in length. The resulting line capacitance is only 4.5

f. It is assumed for the present that the line is unterminated.

Examining the capacitances discussed above, we see that the dominant capacitance is that of

the bonding pads, which are by far the largest structures on the chips themselves. The total

capacitance Ct is 0.9 pF, essentially equal to the combined capacitances of the two bonding

pads and the two gates. Again looking to the future of silicon technology, we assume that

the data link between chips will be required to operate at a rate of I Gb/s (,r = 10-9 sec).

Assuming that the final gate has a threshold voltage of 1 volt, the reactive power required to

drive the electrical interconnection is then given approximately by

Pe = 450 pw. (19)

Turning attention to the optical solution to this interconnection problem, we replace the

bonding pads and electrical line with an essentially lossless optical path (e.g. a fiber).

Again the capacitance of the destination gate must be charged to the threshold voltage,

taken to be 1 volt, in a time period of I nsec. The electro-optical parameters are all taken to
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be identical to those used in the gate-to-gate illustration, yielding the same electrical power

required to drive the optical interconnection,

Peo= lmW (20)

We see that in this case the amounts of power required for the electrical interconnection and

the optical interconnection are not far apart. If the interconnect has some degree of fan-out

associated with it, the optical link becomes even more attractive in the comparison (to

double the optical power emitted by the laser requires only an increase by 1.8 in electrical

drive power for this particular laser). Therefore we can conclude that in this example, the

use of an optical interconnection can not be clearly rejected based on drive power

considerations, but it also can not be justified on this basis. Rather, it is the immunity from

mutual interference that is the main attraction of the optical link.

We turn now to the case of a terminated electrical line. The electrical interconnect line must

be terminated in its characteristic impedance if the length of the line and the bandwidth of

the interconnect exceed a certain limit. In simplest terms, if a reflection from the end of the

line travels back to the source, and arrives there with as much as a half a bit-period of

delay, then potentially the signal transmitted to the gate will have sufficient reflection noise

to cause unreliable triggering of the gate. On a lossless transmission line with inductance L

per unit length and capacitance C per unit length, the velocity of propagation is

1 -(21)

If the line length is 1, then potential problems arise with an unterminated line when

1 > vt. (22)
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The velocity of propagation on a standard 50 ohm coax line is typically abort 0.5 times the

free-space velocity of light. For a 1 Gb/s data rate, the maximum allowable line length for

an unterminated line would then be of the order of 15 cm.

To avoid reflections, it simply necessary to terminate the electrical line in its characteristic

impedance. For the lossless LC line, that impedance is given by

Ro (23)

The power required to drive a terminated electrical line can now be calculated with the help

of Eq. (11). For a 50 ohm transmission line, a 1 volt threshold voltage, and again

assuming a 1 nsec. bit period, the required power for an electrical interconnect becomes

Pe = 10 mW (24)

Note that the presence of the terminating resistor has dramatically increased the drive power

necessary for the electrical connection, to the point where the optical interconnection now

has a distinct advantage in terms of required drive power.

8. Optical Clock Distribution to a VLSI Chip

As VLSI chip capabilities increase through the scaling down of feature sizes and the scaling

up of chip areas, interconnection delays at the chip level are known to be rapidly becoming

the dominant limitation to chip speed. Important among these chip-level interconnect

problems is clock distribution, i.e. the transmission to all parts of the chip of a reference

timing signal, free from differential delays that could lead to a loss of synchronism. The
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only previous work on the problem of clock distribution at the chip level is that of Fried1 5.

Much of what follows is based on the work of Clymer 16,17.

There are major problems associated with the distribution of signals within integrated

circuit chips via conductors. These problems arise from the finite resistivity, capacitance

and length of the conductors used as the signal paths, and from the limited number of

layers available for routing. Chip designers can route signals over different types of

conductors, each characterized by a different resistivity, and all having about the same

capacitance per unit length. Aluminum conductors have the lowest resistivity, while

polysilicon conductors have the highest, the two resistivities differing by two orders of

magnitude. Low resistivity implies a small RC time constant for charging the line, and

hence implies the smallest amount of delay per unit length. While aluminum is very

desirable as an interconnect medium, many VLSI fabrication technologies support only one

or two levels of metal interconnection. Aluminum is needed for the distribution of ground,

supply voltages, and other special communication lines, and its use for other functions may

be restricted by the need to avoid crossing conductors and the limited number of layers for

wiring. Even in designs having several layers of wiring paths, the majority of chip surface

area is occupied by interconnections rather than active devices.

The clock signal is used to synchronize the operations of a very large number of devices on

a VLSI chip. The large number of devices that the clock distribution system must

accommodate, and the wide range of distances that exist between devices create special

limitations in this signal distribution problem. The finite capacitances and resistivity of the

rather long wires, as well as the capacitances of the multitude of devices attached to the

clock line (i.e. the very large fan-out), result in a very large loading of the clock driver. All 4

capacitances are present in parallel and therefore add to produce a large overall capacitance
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that must be driven. The large capacitive load causes a broadening of the clock pulses and

slows the overall operation of the chip.

There are two design approaches that can be used to reduce the effect of capacitive loading

of the clock drivers. The first is characterized by a chain of increasingly larger inverter

stages. Such a strategy minimizes the overall delay through the chain of inverters. The

second approach is illustrated in Fig. 8. This figure shows a hierarchical distribution

w
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Figure 8. Hierarchical distribution with inverters.

system in which the fan-out at each node is limited to reduce the transition time for the

driver stages at the nodes.

The circuit lines can be modeled as distributed RC paths, and as such the waveform

propagation is governed by the diffusion equation. Each length of conductor has an

associated delay that is a function of the capacitance per unit length, resistance per unit

length, and length of the wire. Furthermore, as feature sizes are made smaller and smaller,

the interconnection delay increases quadratically with the reciprocal of feature size for a

fixed length of interconnection. The large range of different delays corresponding to the

conductors connecting the clock driver to many different clocked devices leads to

differences of clock pulse arrival times at those devices. Such a phenomenon is commonly
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referred to as "clock skew", and it has a large influence in determining the rate at which the

chip can run.

Several approaches have been suggested and implemented to reduce or eliminate the clock
skew problem. One approach, suggested by Anceau 18, involves distributing a low

frequency clock chipwide to several functional blocks, and internally synthesizing a high-
frequency clock to synchronize operations within each block. A second approach, shown
in Fig. 9, is characterized by the use of metal (heaviest lines) to distribute the clock to

a multitude of smaller functional blocks, and the use of polysilicon to locally distribute the
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0, Figure 9. Hfierarchical distribution system with metal and polysilicon wiring.

:signal within each blok. A third approach forces all lines to be of exactly the same length;

one method for realizing this goal is the so-called "H-tree" distribution system shown in

Fig. 10 19. A fourth approach eliminates a chipwide synchronization signal by designing
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Figure 10. H-tree distribution system.

each functional block to be self-timed. This approach allows fast execution of operations

within each functional block, but at the expense of handshaking delays for communication,

and added control lines between functional blocks 20. All of the above approaches have

the unfortunate attribute of requiring massive use of metal wiring due to the large lengths of

necessary for coverage of the entire chip.

One possible approach to the design of an optical clock distribution system is shown in

Fig. 11. An optical clock signal is generated by an off-chip laser diode, shown at the top

Source I
S

ouHologram
Chip

Figure 11. Optical distribution of a clock via a holographic optical element. 
U

33



of the figure. The optical beam is then mapped through a holographic optical element to

various photodetector sites on the chip surface. The detected signal is converted to a digital

voltage on the chip, and is then distributed to nearby clocked devices. Optical clock

distribution takes place to small functional cells on the chip, from which the clock signal is

sent via polysilicon interconnections to the clocked devices within each functional cell. The

communication delay differences from the laser source to the various detector sites are

1P entirely negligible, and the prime source of clock skew is variations of the response times

of the photodiodes and amplifiers distributed over the surface of the chip. Of course other

optical methods of distributing the clock could also be envisioned, perhaps using optical

waveguides on the chip itself.

Two technological problems that arise in the optical clock distribution approach should be

mentioned. First, it is highly desirable to use near IR radiation for the optical clock, since

the technology of high-speed semiconductor sources is well-developed in this wavelength

region. However, the penetration depth of such IR radiation in silicon is greater than might

be desired, leading to the generation of deep charge carriers which may be able to diffuse to

nearby portions of the chip, causing unwanted interference. Design rules may have to take

account of this effect, or alternatively, means for confining the charge carriers may have to

be developed. Secondly, small variations in line-width across the chip, due to

nonuniformities of the fabrication process, result in significant variations of time delay

through the detector/amplifier circuits on the chip. A ± I Im variation of linewidth in the 4

gm design has been found to result in a ±5 nsec variation of transition time of the clock

waveform. This variation can be reduced if more area is devoted to the clock

detector/amplifier circuitry. In addition, the assumption of a ± 1 Jm variation is probably

far too pessimistic.

An example of a detection and clock driver circuit is shown in Fig. 12. In this figure,
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Figure 12. Detection and clock driver circuit.

devices to the left of point A represent a standard transimpedance amplifier chain commonly

used in optical communication receivers 2 1. The photodiode is shown on the far left. The

devices to the right of point A represent a textbook example of a VLSI clock driver 22. The

outputs correspond to the two-phase clock signals commonly used in VLSI designs.

Figure 13 shows a photograph of the layout of a chip that has been fabricated for the

* I PHOTOGRAPH

Figure 13. Optical clock test chip.

purpose of testing the approach outlined above. The function of this chip is simply to

conduct a series of tests on its own performance. The 9 vertical strips in the upper portion

of the chip are the individual optical receivers, with two contained in each strip. The

leftmost string of devices in the upper half of the layout comprises at test circuit for

measuring the maximum allowable clock rate. The four similar vertical strips to the right of

this circuit contain eight receivers used in a clock-skew measurement test. The receivers in

the lower half are included to help align the optical input beams to the photodiode windows
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for the leakage current tests. This chip was fabricated with the MOSIS 3 Atm CMOS

process. The individual detectors are 20 pAm by 20 pAm in size. The performance of the

receivers has been tested only in the visible portion of the spectrum (632.8 nm

wavelength), not yet in the near IR, where the interest is greater.

The yield obtained on this chip was very poor, due primarily to the simultaneous presence

on the chip of both analog and digital circuitry. However, it was possible to find chips on

which individual tests were operable, and measurements were accordingly taken. The

maximum clock frequency, averaged over 10 chips, was found to be 15.1 MHz, with a

standard deviation of about 1.4 MHz. A 2 Am design could be expected to have a

maximum allowable clock frequency of no more than 40 MHz.

A measurement of the skew introduced by variations of the delay time experienced through

different receivers was also made. The results showed an average receiver-to-receiver

skew of 13.25 nsec., with a standard deviation of 1.5 nsec.

Finally, leakage current tests were performed to determine the maximum storage time

achievable with dynamic latch cells that are at various distances from a photodetector. The

results are a function of the optical power incident on a photodiode, but with the maximum

available 632.8 nm optical power (2.2 mw) incident on a single photodetector, spacings of
several tens of microns were found to be required if the storage time of the latch was to be

undegraded. This constraint can be expected to be more stringent if the clocking

wavelength is at 800 nm. Considerations such as these can lead to new design rules that

account for the leakage currents and prevent them from degrading latch performance, at the

cost of significant geometrical constraints.

C.l 36



-- .....

The test results described above demonstrate that the transimpedance amplifier approach to

clock detection and distribution suffers many limitations, and is in general not very

competitive with present day non-optical approaches. For this reason, a second approach

was devised that overcomes many of the above limitations. This alternative approach is

now briefly described. Rather than trying to electrically amplify a a received optical clock

waveform for direct use in generating an electrical clock on chip, the alternate approach

uses a series of free-running digital ring oscillators wherever the transimpedance amplifiers

were located in the previous approach, and uses a photodetector within a phase-locked loop

circuit to force locking of each ring oscillator to the common frequency of the optically

distributed clock. A circuit diagram showing the phase-locked loop is found in Fig. 14.

V
N+ + Low pass

Filter

Volag controlled ring oscillator

Figure 14. Phase locked loop containing an optical detector.

SPICE simulations of this approach have yielded very encouraging results, indicating that

with a 2 im CMOS process, clock frequencies up to 150 MHz should be possible.

Furthermore the skew between individual frequency-locked ring oscillators is predicted to

be of the order of 50 ps. Finally, far less chip area is required of a ring oscillator with a

phase-lock loop than is required of a transimpedance amplifier. A CMOS chip is currently
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being designed to check these predictions experimentally. Much work remains to be done

on the subject of optical clock distribution at the chip leveL

The understanding of the capabilities and limitations of optical clock distribution systems is

still at an early stage, and it is not possible to be definitive about exactly what circumstances

will justify the use of the optical approach. Undoubtedly there will be much future work in

this area, not only on the problem of clock distribution at the chip level, but on the use of

optics for distributing timing signals at the board and wafer levels as well.
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Neural networks for computation: number representations
and programming complexity

Mitsuo Takeda and Joseph W. Goodman

Methods for using neural networks for computation are considered. The success of such networks in finding
good solutions to complex problems is found to be dependent on the number representation schemes used.
Redundant schemes are found to offer advantages in terms of convergence. Neural networks are applied to
the combinatorial optimization problem known as the Hitchcock problem and signal processing problems,
such as matrix inversion and Fourier transformation. The concept of programming complexity is introduced.
It is shown that for some computational problems, the programming complexity may be so great as to limit the
utility of neural networks, while for others the investment of computation in programming the network is
justified. Simulations of neural networks using a digital computer are presented.

I. inkhctim among many neuronlike logic elements, and the second
Even the fastest modern computer cannot compare is a software problem of how to program such highly

to the brain of an infant in the performance of intelli- parallel computation on a neural network system. We
gent information processing such as image processing may take two different approaches to the first prob-

and pattern recognition. This well-quoted fact sug- lem, VLSI-based interconnections and optical inter-
gests the possibility of a quite different type of com- connections. 3 Neurons in the human brain are inter-
puter. The fundamental difficulty in creating artifi- connected in 3-D space since it is the most natural and
cial intelligence on conventional digital computers efficient way of interconnection, but VLSI-based in-
comes from the large difference in architectures of terconnections are inherently 2-D in nature. Optical
information processing between digital computers and signals, on the other hand, can flow through 3-D space
human brains, i.e., the sequential processing in von to achieve the required interconnects between neuron-
Neumann machines and the massively parallel compu- like logic elements. Based on this idea, several
tation in human brains.i Neuroscientists have re- schemes of optical computing have been proposed. 4-7

vealed that the massive parallelism and the computa- Among them, Psaltis and Farhat4,7 recently reported
tional richness in the human brain lie in the global and an optical implementation of the Hopfield neural net-
dense interconnections among a large number of iden- work8 ,9 using an optical vector-matrix multiplier"° as a
tical logic elements or neurons which are connected to programmable interconnector and demonstrated the
each other with variable strengths by a network of feasibility of optical content addressable associative
synapses.2 An artificial neural network system that memory.
can perform parallel computation and the function of Extensive studies have been done on the basic char-
natural intelligence is extremely attractive as a future- acteristics of the neural networks themselves, but the
generation computer. second problem of how to program them to do various

However, there exist two major problems that must computations of practical interest has not been fully
be attacked before the realization of such a neural studied except in their application to associative mem-
computer. The first is a hardware problem of how to ory.'2  Quite recently, Hopfield and Tank 3 showed
implement those global and dense interconnections that a certain class of optimization problem can be ,R

programmed and solved on their neural network mod-
el. They demonstrated the computational power and
speed of their neural network by solving one of the NP- .
complete problems1 4 known as the Traveling-Sales-
man problem. The purpose of this paper is to extend

The authors are with Stanford University, Department of Electri- their idea and explore new possibilities of program-..
cal Engineering, Stanford, California 94305. Ming and solving on neural networks other various

Received 22 March 1986. nonbiological problems of practical interest. We em-
0003-6935/86/183033-1402.00/0. phasize that our goal is not to propose mechanisms
CO 1986 Optical Society of America. that might actually be utilized by the brain but rather r
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T u V+ I,,1

3N

sw3 where N is the number of neurons, and Tj are elements
[ ] oof an interconnection matrix representing the

sw strengths of connections. At discrete times, switches
N L R- SW, turn on, and the inputs Ui are fed back to corre-

tei spending neurons to change their states or to leave

..'  their states fixed according to a threshold rule deter-
mined by nonlinear operators NLRj so that

12V,(k + 1) = stplU"(k), (2)

U3 where k is discrete time, and stp(x) is a unit step
.1- U-4 r-function which is 1 for x _ 0 and 0 for x < 0. Thus

-INTERCONNECTIONS neurons take binary values either 1 or 0, and the binary
outputs are sent out from fan-out terminals Qj and

Fig. 1. Neural network model. distributed through the interconnection network to
regenerate new inputs at the fan-in terminals Ii.

to apply neural network ideas to computational prob- In the continuous model, neurons change their
lems and thereby to open some new avenues for realiz- states according to the following equations of dynam-
ing powerful man-made computers. ics: at

We first review briefly the Hopfield neural network ics: N .
model and describe some minor modifications. Next, dl,/dt T uV ' + 1, (3)

we propose a new scheme to represent numbers by A./ 1(
neuron state variables, which is essential in solving r
numerical problems on neural networks. Based on v,= g(U,) (4)

this number representation scheme, we show how we where t is continuous time, and g(x) is a nonlinear
can program and solve combinatorial optimization function whose form can be taken to be "
problems 5 known as network flow problems16 or more
specifically as the Hitchcock problem' 7 and simulate g(x) = (1/2)11 + tanh(x/x(,)j. (5)
its computational performance on a digital computer. which approaches a unit step function as x0 tends to
Then we give a programming scheme to perform signal zero.,.' .,
processing for signal recovery, such as the computa- Hopfield 9 has shown that if Tij = Tji, neurons in the
tions of matrix inversion and Fourier transformation. continuous model always change their states in such a
The performance is again simulated on a digital com- manner that they minimize an energy function defined
puter. by

The important idea of programming complexity is b NN N

then introduced, and it is shown that for some prob- E =- -(1/2)NTV,V,- 1,V,  (6)
lems the data-dependent programming complexity is -lj-1 - ,

so great that computations invested in finding the ii
right neural interconnection and bias patterns may and stop at minima of this function. The same is also

equal the complexity involved in solving the problem true8 for neurons in the discrete model if we further 7

directly without a neural network. For such problems, assume that Tii = 0.

neural networks, as we now understand them, may not B. Neuron Transition Modes
be an appropriate architecture for computational W teilts
problem solving. We adopt thsimute digita comer bus t whenuch

We conclude with the discussion of the limitations easier to simulate on a digital computer. But when Tij

and problems that remain to be solved. p 0, the model sometimes shows an oscillatory behav-
ior or keeps wandering around the state space near the

It. Hopftd el and its Modificatiom minima of the energy function. Most problems of
practical interest require self-feedbacks (Tii #0) when

A. Hopfield Model programmed on a neural network. We, therefore, ,r

The Hopfield model 9 consists of a number of mutu- need to design transition modes that reduce such phe- .3,y
ally interconnected nonlinear devices called neurons nomena. Without claiming any similarity to natural . -

whose states are characterized by their outputs Vi neuron transition rules, we choose four different dis-
(which may take values between 0 and 1). The dy- crete-time transition modes for examination.
namics of neurons in the Hopfield model can be de- "-
scribed in both discrete and continuous spaces. 1. Direct Synchronous Transition Mode

The discrete model is illustrated in Fig. 1. At fan-in All the transitions occur simultaneously when the
terminals Z, each neuron i receives inputs TuV j from switches SW, turn on in synchronism at discrete times
other neurons j and a bias input Ii associated with k. The fan-in inputs are directly fed back to generate
itself: new neuron states. A continuous nonlinear function

3034 APPLIED OPTICS / Vol. 25, No. 18 / 15 September 1986

% " 4
% ~ N N %



g(x) allows neurons to take state values between 0 and est, we shall make a proper choice of a mode from (3)
1. The following equations are assumed to hold: and (4).

N
U, l ' T, V,(k) + 1,; (7) III. Number Representation Schemes

In most problems of practical interest, solutions are
V',(k + 1) = g[U,()l. (8) described by a set of numbers. Therefore, we must

have a means to encode numbers on neuron state vari-
2. Differential Synchronous Transition Mode ables Vi. While allowing neurons to take continuous

state values during the process of energy function min- P %The differential equations in the continuous model imization, we demand that they take binary values of 1are approximated by difference equations. Transi- or 0 at the final stage so that we can obtain digital
tions occur synchronously. In this case, solutions like those given by digital computers. For P.''

-N' simplicity, we first assume the numbers are positive
I, - 17,(k - 1) = \ T,V(k) + I,; integers including 0, although we can also represent

(9) general bipolar and complex numbers by using addi-
vk + 1) = g[U,(k)). tional neurons. We consider three different ways of i.A

mapping the positive integer space Z+ onto the neuron
This mode requires one memory cell for each neuron to state space V.
keep its previous input.

A. Binary Scheme
3. Direct Asynchronous Transition Mode (Random A common way of representing numbers in digital
Delays) computers is to use binary digits. For example, 5 is ?P1%

This mode is similar to mode 1, but the switches SWi expressed by 0101. This scheme uses log2(N + 1) bits J.
turn on and off asynchronously, i.e., with random de- to express a number N. If we let one neuron represent .
lays. In this case, 1 bit, we have a one-to-one correspondence between

N elements in the number space Z+ and those in the
U (k - At, T ' V,(k - At,) + 1,, neuron state space V. Despite the economy in the

(10) number of bits or neurons used, a system based on the
V,(k -At, + ) = gjU(k - At,)]. binary scheme is not fault-tolerant. In other words,

even a single failure in a highly significant bit gives rise
where Ati are skews caused by time delays in the net- to a large error in the number represented.
work and are fractions of one clock time, while e is a
small positive constant. Without loss of generality we B. Simple Sum Scheme
can assume In this scheme, a number is represented by a simple kX7

At, < At., < ... < At sum of the neuron state variables Vi, i.e., the total
number of firing (Vi = 1) neurons. For example, 5 is

because the numbering of neurons is arbitrary. In this expressed by 0011111, 0101111, 1101011, all of which %
* mode, one particular neuron i need not wait for the last have five 1-bits. This is a one-to-many mapping from
* neuron N for synchronization, and when it decides its Z to V, and the numbers have degenerate representa- "

new state, it can make use of information about new tions. This scheme requires N bits to express a num- %
states of other neurons that have already renewed their ber N and is not economical in the number of bits or
states. neurons. However, it is highly fault-tolerant because

an error in a single bit does not cause a large error in the
4. Differential Asynchronous Transition Mode number represented. The fault-tolerance of the hu-
(Random Delays) man brain is believed to come from this type of averag-

This is an asynchronous version of mode 2. In this ing over a large number of neurons.' I
case, So far, we have compared the binary scheme and the

.N. simple-sum scheme from the viewpoint of their fault-
I',(k- -At,) - 1,(k - At, - 1) = " T,1V (k - At,) + I,, tolerance. More important is 'heir difference in prob-

(11) lem-solving capability. As will be seen, problems are ,
V,(k - At, + ) = gJU,(k - At,) - U,(k -A At, - 1)j. solved through a spontaneous energy minimization %

process in a neural network, and the solution is given
Using simulations on a digital computer, we found by a point in the neuron state-variable space that is

that the synchronous transition modes (1) and (2) gave reached after this minimization process. In the binary .-.
rise to large oscillations in the energy function when T scheme, there is only one point in the state variable
e 0 but that the asynchronous transition modes (3) space that gives a correct solution. In the simple-sum

and (4) have greatly reduced oscillatory or wandering scheme, on the other hand, multiple points give the -
behavior, although the reduction is not complete. correct solution. Because of this degeneracy and the
While mode (3) is quicker in minimizing the energy clustering of quasi-minimum energy points in the neu-
function, mode (4) has more reduced oscillations. De- ron state-variable space, the simple-sum scheme offers
pending on the characteristics of the problems of inter- more chances to reach the correct solution. Suppose,
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for example, 3 is the correct solution. In the simple- and imaginary parts, respectively. Complex integers
sum scheme, we can get a correct solution when the are expressed by
final state is either 00111, 10110, 11100, or 10101 etc., K r M 1whereas we can get the correct solution in the binary R)(M + 1 )k - Z Vk-I)M+I - [(1/2)[(M + )K -

scheme only when the final state is 00011. Simulation k-, J
results reported later in this paper support the hypoth- M
esized superiority of the simple-sum scheme. +)+ 1 k-[ 1)K 1+ j (-+ Vk M+i - (1/2)[(M +1 -

1] ,"-

C. Group-and-Weight Scheme k-1 I

Despite its merit in fault-tolerance and computa- (16)

tional capability, the simple-sum scheme requires too where j2 -1.
many neurons when solutions include large numbers.
We propose the group-and-weight scheme which lies E. General Real and Complex Numbers
between the binary anr the simple-sum schemes. In We can also express numbers with fractional digits,
this scheme, we divide the total q bits into K groups, e.g., 13.26, 3.14, by using more neurons and labeling
each of which has M bits (q = KM) and interpret the them with negative subscripts (i < 0), e.g., V-4, V- 12,
groups az uigits whose numbers are given by simple etc., so that the parameter k in the first summation in
sums c r the bits in the corresponding groups. For Eq. (12) can run from a negative integer -K'; the
exampl>k, with q = 6, K = 2, M = 3, 5 is expressed either number representation becomes
by 100 100 [41 x (1 + 0 + 0) + 40 X (1 + 0 + 0) = 51, 010 r
001, 001010, or 100 001 etc. A number expression for _, I(M+IW-1- I V(+ ,M+)• (17)
the simple-sum scheme is given by k i-L I

, 1 Equation (17) can express numbers ranging from 0 to
(M+ 1 )k

-
1 V,,' 1 . (12) (M + 1)K - (M + 1 )-(K'+I), with a minimum digit of

k-, quantization being (M + i)
-
(K'+). Just as we did in

The expression includes the binary and the simple- Sec. III.D, we can easily modify Eq. (17) to a form
sum schemes as special cases. When we put M = 1 and similar to Eq. (16), so that it can express general com-
K = q, we obtain a number expression fo: the binary plex numbers. Again here, the group-and-weight
scheme scheme includes the binary and simple-sum schemes

q as special cases. If we put M = 1 and K = q, Eqs. (15),
h' 2- I v (16), and (17) give the expressions for the binary

k-1 scheme. Likewise, the expressions for the simple-sum
and when we put M = q and K = 1, we obtain a number scheme can be obtained by substituting M = q and K f
expression for the simple-sum scheme I into Eqs. (15) and (16) and M = q and K = -K' into

Eq. (17).
S(14) Finally, it should be noted that the number

,.4) representation schemes we proposed here are all based
The group-and-weight scheme requires M logm+ 1 (N + on linear mapping of the number space onto the neu-

1) bits to express a number N. This also gives the ron state space. In other words, numbers are repre-

number of bits required in the binary scheme when we sented by linear combinations of neuron state vari-

put M -- 1 and that required in the simple-sum scheme ables. This is an important point in designing number
putn Me =ut 1 and tt rrepresentation schemes for the Hopfield neural net-

work, since the energy function Eq. (6) has a quadratic
D Bipolar and Complex Integers form with respect to neuron state variables. Other

So far, we have restricted our number representa- nonlinear mapping schemes, like floating-point ex-

tions to positive integers, but they can easily be ex- pressions, cannot form the energy function required by
tended to include bipolar and complex integers. A the Hopfield model, because the floating-point expres-
bipolar expression can be obtained simply by adding a sions need to have neuron state variables in exponents.
negative bias integer to the expression for positive This certainly limits the possibility of covering a wide
integers given by Eq. (12): range of numbers using a small number of neurons, butfor a neural computer it is not a fatal disadvantage

(M + ] iitybecause the use of ample neurons with much redun-
(M + l)#-  V_ ] -/g -. ) dancy is the key to improving its computational capa- - j

where (1/2) [(M + 1 )K - 11 is half of the largest positive biadyesit
integer that can be expressed by Eq. (12), and the floor IV. Hftchcock Problem ,.
operation [11 gives the nearest integer value less than x. Based on the number representation schemes de- 0
Equation (15) can express bipolar integers ranging scribed in the previous section, we show how a combi-
over ± [(1/2)[(M + 1)K - 1]1. natorial optimization problem known as the Hitchcock

To express complex integers, we need twice as many problem' 7 can be programmed and solved on a neural
neurons, i.e., neurons V and Vi') that represent real network.
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S2 Table I. (a) Cost Matrix for t1he Hitchcock Problem; (b) Sample Solution

D2 Depicting the now from Source X to Demand Y

Cost Matrix, C r

Y=I Y=2 Y=3 Y 4 Y=5

X~i S 7 3 3
S1D 3X=3 9 1 4 :

X=4 3 2 2 2 4

(a)

Flow Matrix, f4. r

Cost: Cs,, DI D2 D3 D4 DS

Flow: 2 7 3 2 4
Sl $ 0 S 0 0 0

Fig. 2. Hitchcock problem with four sources and five demands. S2 3 2 0 0 0

S3 4 0 0 0 2 2

Suppose there are m sources (X = 1,... X = m) for s4 6 0 b 3 0 2
a commodity, with Sx units of supply at X, and n sinks (b)
(Y = 1, ... , Y = n) for the commodity, with a demand Table Ii. Neural Representation of the Flow Matrix for the Hitchcock
Dy at Y, as shown in Fig. 2. If Cxy is the unit cost of Network Flow Problem; q Neurons are used to Repr One Element of

shipment from X to Y, the Hitchcock problem is to the Flow Matrix

find a flow lx y that satisfies demands for supplies and The Hitchcock Problem

simultaneously minimizes flow cost. Thus the prob- 2 Y_ _

lem is to minimize _=__ __....... _ =
'Y/ , 1 )9 - 2_ 1 9 -- ....... 1 9 --- 2 1

X-l Y-I

under the constraints X2
n X=m

.x f = SX (X = 1,2. m ), (19)

N [.,= D1 (Y = 1,2. n). (20) B. Energy Function
X- We use the spontaneous energy minimization pro-

In Table I, (a) is an example of a unit cost table, and (b) cess of a neuron network to solve optimization prob-
is an example of a solution represented in the form of a lems. Since the energy function defined by Eq. (6) has
flow matrix or a transportation matrix. The flow ma- a quadratic form with respect to neuron state variables
trix describes, for example, that from the source at X = V,, we find a quadratic function of Vx yj so that the
2, two units of the commodity should be sent to the minimization of the function corresponds to minimiz-
demand at Y = I and one unit to the demand at Y = 2. ing the flow cost and minimizing violations of the

constraints. An energy function that satisfies such
A. Flow Matrix Representation requirements is given by

Table II shows how the flow matrix can be represent- K M

ed by neurons. We assign q neurons to each matrix E = -(A/2) N' Y V' (M + 1) ' -' 11 - 2V.,i.,,_,)M+I'2

element to represent its contents fx y, so that we use N .X.-' I - k.I ,= --
= qmn neurons in total for the complete representa-
tion of the flow matrix. For the convenience of mathe- [ _ M 2_,I, ]

matical treatment, we specify each neuron by a set of + (RA2m _' - N' (M +
three subscripts Vx y,, where X Y specifies the matrix xkl v'1 -, I
element the neuron belongs to, and i specifies the K M 1.
position of the neuron in that matrix element. Since + (('/2) N -[ - N)" (M + 1) .1. +'
the group-and-weight number representation scheme Y- I X-1 A-I-1
includes the binary and simple sum schemes as special
cases, we express the flow matrix elements lx v by the + V V VV ('(M +1.
group-and-weight scheme: + iD/2) .\- l+-'-' I-"w , 22

fx)' =fi (M + 11)' - ' V X V.\. ,t_ +,  ( 21) (2

k +1 ,' where A, B, C, and D are positive weight factors. The
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first term weighted by A is introduced for the binariza- seon an1 (Z = Z') terc
tion of the neuron state variables Vxyi, i.e., Vx y = 1 or z 0 (Z Z')
0. Because the function FMV f -(1 - 2V)2, (0 < V5 -febcs<h0) Bakecse theimum fu t V 0a = - 12, (0nimiz- In Eq. (24), the first term describes self-feedbacks, the

g ts tminimum values at fina V i ginmz second and third terms represent local interconnec-
inary nmerm assures that the final solution is given by tions between neurons in the same row (X' = X) and in

binary numbers. The second term, weighted by B, is the same column (Y' = Y), respectively. The last term
introduced to minimize violations of the source con- describes the global interconnections between all neu-
straints given by Eq. (19). Likewise, through minimi- rons. If we put M = 1 and K = q, we obtain the
zation of the third term with a weight C, we can satisfy interconnection strengths and the biases for the binary
the demand constraints given by Eq. (20). The last number representation scheme:
term, weighted by D, is for minimization of the total
flow cost. The total cost is squared in Eq. (22), but we Txy.x'v.,, = 4A2k- xx.6,,.
may also introduce it without squaring, because the B2"+"'-'x,_ C2'+V-261.,_ D2k+k'-2CX1,X,,
cost is always positive. Note that the way we define (26)-k -

2 y
the energy function is not unique, so that we can solve ()
the same problem by using different programs on the IX,,k = -A2k + B2-Sx + C2 'D. (27)

neural network, just as is often the case in solving Lti r h e
problems on conventional digital computers. Likewise, the interconnection strengths and the biases

Considering the various terms represented in Eq. for the simple-sum scheme can be obtained by putting
(22), it can be seen that solutions with low energy do M = q and K = 1:
not necessarily correspond to solutions with low cost.
However, if the weighting constants are properly cho- Txy.i;x''.i = 4A5 xx.6yy.b , - ,- Cly. - DCxly, (28)or%

sen, the binarization, source, and demand constraints l,.i = -2A + BSx + CDy (29)
will eventually all be perfectly satisfied, resulting in a
one-to-one relation between energy and cost. Thus D. Numerical Experiments
eventually low-energy solutions will correspond to To examine the computational performance of a
low-cost solutions. neural network, we simulated state transitions of neu-

rons by using a digital computer. We used the unit
C. Interconnection Matrix costs and the source and demand constraints listed in

By analogy with digital computers, if we regard the Table I. Based on these data, we determined the
expression for the energy function Eq. (22) as a source interconnection strengths and biases. Since at
program, the next step is to compile or map it onto the present we have no systematic methods for finding the
interconnection strengths Tij of the neural network, best combination of the weighting factors A, B, C, and
This can be done by comparing Eq. (22) with the D, they were found empirically through the observa-
energy function Eq. (6), which is now written as tion of several experimental results. The lack of a

K M n K M systematic method for finding the weighting factors
E = -(1/2) ' ' ' ' 5 TXVYA-0M+ ,:X'Y'. .IM+, should not be too disturbing. Such a situation is com-

x- Y-1 k-1 i-1 X '-1 Y'-1 V- i'-1 monly encountered in solving multiple-target optimi- % ,
X VXY.(kI.M , Vx'r.(k,_],M+i' zation problems (on a conventional digital computer),

such as lens design problems and color matching prob-
n K, U lems. However, it should be emphasized that the abil-

VXY. _kM+, IXyk-D)M+i' (23) ity to obtain a good solution depends strongly on mak-
X-e Y-ne n ne.o ing good choices for A, B, C, and D. Throughout the

where TxY(k-I)M+i;x'Y(k'-I)M+i, denotes the strength of experiments with the Hitchcock problem, we used the
the interconnection between the neuron at the [k - direct asynchronous transition mode and the nonlin-
1)M + i~th position in the flow matrix element at Xy ear function given by Eq. (5) with 0.1 < x0 < 1.
and the neuron at the [(k' - 1)M + i']th position in the Figure 3 shows an example of the reduction of energy
flow matrix element at X'Y'. By equating the corre- performed by a network with N = 60 neurons that
sponding coefficients of the two quadratic equations represent the flow matrix based on the binary number
(22) and (23), we can determine the interconnection representation scheme (N = qmn = 3 X 4 X 5 = 60, M =
strengths and the biases: 1, K = 3). Table III shows the flow matrices obtained

at several points on the curve of Fig. 3. The weight
T\.cy.k_ ,X,.xy k _-+,.f 4A(M + l)k-xx.y,51,,, factors were chosen as A = 27, B = C = 80, and D = 0.2.

- B(M + 1 )+k-2 6 ,, Since we have no a priori knowledge about the solu-
- C(M + I)k+k I2 , tion, uniformly distributed random numbers between

)k+k'2C 0 and 1 were generated and assigned to the initial e
-D(M + I ) .(-'' ,4X (24)

states of the neurons. Starting from a very high ener- V
SVk-1,M+, = -2A(M + 1)k- + B(M + 1) - S. gy state, the neural network reduced its energy sponta-

+ ('(M + ])1-). (25) neously by changing its state so that the flow matrix
could satisfy the constraints while minimizing the total

where bzz, is a Kroneker delta defined by cost. After six iterations, we reached feasible solu-
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S.Table Ill. Flow Matrices for the Specified Numbers of IterationsCorresponding to the Points Indicated on Fig. 3

DI D2 D3 D4 D5
N,0 2.0 7.0 3.0 2.0 4.0

SI 5.0 3.6 5.2 6.3 4.6 2.8
S2 3.0 1.2 3.4 1.4 5.3 2.4
S3 4.0 2.9 3.4 5.8 4.0 2.5
S4 6.0 5.5 1.6 5.9 3.0 1.3

(a)II,'
D1 D2 D3 D4 D5

No. 1 2.0 7.0 3.0 2.0 4.0

boO Sl 5.0 0 0 0 0 0

// S2 3.0 0 0 0 0 0
S30 0 0 0 0 5.0
S4 6.0 0 1.0 3.0 0 2.00'i

10 Time (b)

Fig. 3. Neural dynamics for the Hitchcock problem using a binary
number representation scheme. The initial states are randomly DI D2 D3 D4 D5
generated from a seed, and the transition mode is direct asynchro- No. 2 2.0 7.0 3.0 2.0 4.0
nous. The final transportation matrix gives a network flow cost of
40. The constraints in the energy function are chosen as A = 27, B = SI 5.0 3.0 7.0 0 0 0
C = 80, and D = 0.2. The constant x0 is 0.5. See Table Ill for the S2 3.0 1.0 1.0 1.0 0 0

flow matrices at the iteration numbers indicated by the arrows. S3 4.0 0 0 0 0 4.0
S4 6.0 1.0 1.0 3.0 2.0 0

tions (marked by open circles) that satisfied all the (C)
constraints and gave 40 as the total cost. D I D2 D3 D4 D5

After arriving at a solution using the neural network, No. 4 2.0 7.0 3.0 2.0 4.0
it is important to develop some understanding of how -

good that solution might be. To achieve this end, one SI 5.0 1.0 5.0 0 0 0
could enumerate all the feasible solutions that satisfy S2 3.j 1.0 1.0 0 0 0
the constraints and from this set determine the best S3 4.0 0 0 0 0 4.0
solution. However, since it is very hard to enumerate S4 6.0 0 - .0 3.0 2.0 0____

all the solutions of underdetermined simultaneous in- (d)
teger equations, Eqs. (19) and (20) (which belong to afamily of Diophantine equations), we used a Monte No. 6 Dl D2 D3 D4 D5faiy ofDohnieeutosw sdaMneNo. 6 2.0 7.0 3.0 2.0 4.0
Carlo method and found 50,000 feasible solutions. ______ __- ____

(Note that this calculation was performed simply to Sl 5.0 0 5.0 0 0 0
check how well the neural network had performed.) S2 3.0 2.0 1.0 0 0 0
Figure 4 shows a cost histogram of the feasible solu- S3 4.0 0 0 0 0 4.0
tions found. The solution with cost 40 is found to be S4 6.0 0 1.0 3.0 2.0 0
one of the very good solutions, which would be reached - -)

only with a probability of 6 X 10- 5 if we searched (el
randomly among the feasible solutions. Yet it is still

it not the best solution, which was confirmed to be 38 by
using a stepping stone algorithm.

Figure 5 and Table IV show another example, for ble solution could be reached. These results are indic-
which we assigned 0.5 to the initial states of all neurons ative of the limitations of the problem-solving capabil-
so that they started evolving from the fuzziest states. ity of the binary number representation scheme. As Ie
In this example, we reached a feasible solution with we now show, much better results can be obtained with
cost 49 at the seventh iteration, but we could not reach a degenerate number representation scheme.
any other feasible solutions by further iterations. The To examine the problem-solving capability of the
oscillatory behavior of the energy function arises from degenerate number representation schemes, we pro-
using a discrete model with self-feedback. The solu- grammed the same problem on a 140-neuron network

tion with cost 49 is fairly good but not as good as in the using the simple-sum scheme (N m: qmn = 7 X 4 X 5=
previous example. Experiments performed with dif- 140, M = 7, K = 1). Figures 6 and 7 and Tables V and .

ferent initial values and/or weight factors gave solu- VI show the computational performance of the 140-
tions most frequently with costs around 50 and could neuron network with its initial states all set equal to
not pick up the best solution. In worst cases, no feasi- 0.5, the fuzziest states. Weight factors were chosen to
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Cost Number of Consistent
Solutions 6307,

0 1000 2000 3000 48s736 0I

37 0
38 2 4W
39 2 3000
40 3
41 3
42 5
43 26
44 21
45 58
46 86
47 95
48 220 U
49 337
50 344
51 582
52 728
53 869 1000
54 1292
55 1345
56 1679
57 2144
58 2239
59 2387 0 ,
60 3136 0O Time 23
61 2873
62 2%9 Fig. 5. Second example of the Hitchcock problem using a binary
63 3252 number representation scheme. Uniformly fuzzy states initialized
65 2946 the network, and a softer nonlinear function was used to give the best

66 2995 solution with a flow cost of 49. The weights used were A = 27, B = C
67 2442 -80,Df=f0.2. The constant x 0 was 1.0. The open circle represents a
68 2079
69 2097 solution that satisfied the constraints. See Table IV for flow matri-
70 1649 ces at the iteration numbers indicated by the arrows.
71 134572 126573 902

74 653 Table IV. Flow Matrices for the Specifled Nunes of Iterations
75 661
76 387 Correoondtgl to Points Indicated on Fig. S
77 302
78 220 No.0 DI D2 D3 D4 D5
79 115 2.0 7.0 3.0 2.0 4.0
80 95
81 59 SI 5.0 3.5 3.5 3.3 3.5 3.582 5082 t0 sz 3.0 3.5 3.5 3.5 3.5 3.5
84 Is S3 4.0 3.5 3.5 3.5 3.5 3.5
85 4
86 2 S4 6.0 3.5 3.5 3.5 3.5 3.5
87 0
88 0

Fig. 4. Flow cost histogram for the Hitchcock problem. The num- (a
ber of samples is 50,000.

be A = 29, B = 80, C = 80, and D = 0.55. Through the No. 7 Dl D2 D3 D4 D5
first several iterations, the source and demand con- 2.0 7.0 3.0 4.0 4.0
straints came to be almost satisfied (see Fig. 6 and SI 5.0 0 5.0 0 0 0
Table V), and at the sixth iteration the first feasible S2 3.0 2.0 0 1.0 0 0 %
solution, with cost 43, was reached (see Fig. 7 and S3 4.0 0 1.0 1.0 2.0 0
Table VI). The solution as improved further by S4 6.0 0 1.0 1.0 0 4.0
continuing iterations, passing another feasible solu-
tion with cost 40 at the tenth iteration; one of the best (b)
solutions with cost 38 was finally reached on the twen-
ty-first iteration. To show the role played by the ,%

degeneracy of the number representation, the corn- were not firing. At iteration 22, neuron V2,5,3 stopped
plete states of the 140 neurons are depicted in Fig. 8 for firing, but the correct solution f25 = 1 was retained
the iterations from 21 through 28. Each neuron is because the next neighbor neuron V25 .2 started firing
represented by a star when it is firing (Vxyj = 1) and instead of V2 ,,:,. We can observe a similar phenome-
by a dot when not firing (Vxy.i = 0). The number of non in other sets of neurons representing f,s and f45 at
neurons that are firing in each set of seven neurons iterations 21, 22,23,25,26, and 27. In this manner, the
represents the content of the flow matrix element fx y neural network can give correct solutions at many dif-
at the corresponding position. At iteration 21, for ferent points in its state space, and these points cluster
example, we had f2. = 1 because only one neuron V)5,:3  in a particular region of the state space that corre-
was firing (V 253 = 1), and the rest of the six neurons sponds to low-energy function values. It is because of
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731 SJ Table V. Flow Matrices fr the Specifled Numbers of Heratlon0 CorrepndIng to the Points indicated on Fig. 6

N.0 DI D2 D3 D4 D52.0 7.0 3.0 2.0 4.0

S1 5.0 3.5 3.5 3.5 3.5 3.5
S2 3.0 3.5 3.5 3.5 3.5 3.5
S 3 4.0 3.5 3.5 3.5 3.5 3.5

'2' S4 6.0 3.5 3.5 3.5 3.5 3.5

(a)

.3

SNo. DI 2 D3 D4 D5
N._15.0 2.0 7.0 3.0 4.0 4.0

S 5.0

0o Tim. S) $2 3.0 0 0 0 0 0

Fig.6. Network dynamics of the Hitchcock problem using adegen- S3 4.0 0 0 0 0 2.0
erate (simple sum) number representation scheme. The constants S4 6.0 0 1.0 0 2.0 2.0
used were A = 29, B - C = 80. D = 0.55, and x0 = 0.1. Open circles
again represent solutions that satisfy the constraints. Flow matri- b

ces corresponding to the arrows are found in Table V.

73150i E No. 2 D.1 D2 D3 D4 D5

20 7.0 3.0 2.0 4.0

SI 5.0 3.0 4.0 0 0 0
S2 3.0 1.0 2.0 1.0 0 0 ,

3000 S3 4.0 0 0 1.0 0 1.0
4 6.0 1.0 1.0 1.0 2.0

U (c)

l' DI D2 D3 D4 D5
,00 ,oNo. 3 2.0 7.0 3.0 2.0 4.0

SI 5.0 0 4.0 0 1.0 0
L S2 3.0 1.0 1.0 0 0 0

S3 4.0 1.0 1.0 0 0 1.0

0 Time 2 S4 6.0 0 1.0 2.0 1.0. 2.0

Fig. 7. Continuation of the example shown in Fig. 6. One of the Idl
two in 50,000 best solutions is found at time 21. Open circles
represent solutions that satisfy the constraints (i.e., consistent solu-
tions). The cost associated with the solution at the sixth iteration is rons. In this example, we obtained two different solu-
43, that associated with the group of consistent solutions starting at tions with cost 38, showing that the best solution is not
iteration 10 is 40, and that associated with the remaining consistent unqe
solutions is 38. See Table VI for the corresponding flow matrices. u e

V. Simultaneous Equations

In this section we show how we can program and
this characteristic that the degenerate number solve on a neural network simultaneous equations
representation scheme can have better problem-solv- HX =
ing capabilities than the pure binary number represen- (:0
tation scheme. where H is a full-rank square matrix with N X N

Figure 9 and Table VII show another example of the elements, and x and y are vectors with N elements
computational performance of the 140-neuron net- representing, respectively, unknown and given vari-
work, where uniform random numbers between 0and 1 ables. (Note that deconvolution is a special case of
were assigned to the initial state variables of the neu- this general problem.)
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Table VI. Flow Malte o the 9.clflad Numbors of Iteratlons Iteration No 21
Coor sp tot #*Poklt ltdlcatclInFig. 7 ... .... ** I . . .. ...

D 4 ..........I........ .I....

No 6 D DZ D3 D4 D5 ...... . I .... I ..... I' .....
2.0 7.0 3.0 2.0 4.0

Iteration No 22
SI 50 0 4.0 0 1.0 0 ....... !.....................................................I........ I....... ....... I..... .
S2 3.0 2.0 1.0 0 0 0 ....... I ....... I ..... ...I .. **I .

S3 4.0 0 1.0 0 1.0 2.0 ............. I .. *I** .... I .........

S4 6.0 0 1.0 30 0 2.0 Iteration No. 23SI........ * * * I......... I......... I........... _ _ ... , . .. .,........I........I.......
(a) ....... ....... .... ..... .. .. . ..

Iteration No 24...._ __ __ ... , • . ........ I........I.........
DI D2 D3.D4 D..................................I.......

DI D2 ....... I ......... .. .. .No. 10 2.0 7.0 3.0 2.0 4.0 ....... ..... I .... .... ..
SI 5.0 0 4.0 0 Iteration No. 25

. . . .. . 0.. 0 1 . . ...... I . • I ........ I . ....... .......
423.0 2.0 1.00 0 20 o....... ......... ....... ....I...

S................. ..S3 4.0 0 1.0 0 .0 20 .I. 2.............. ....

S4 6.0 0 1.0 3.0 0___ 2.0_ Iteration No 26 ,%... ...I ***+ I......... I.........I........
(b) *• ....*I....... I........I........I • .... -.=:.

(b) ... ..... .......... . ......

. . . . ... * ....I ....... .I .... --%

Iteration No. 27
....... I •I'''' .I........ I .......... ...o 1 ...... I ... .. ........ I ....... I.. ....

DI D2 D3 D D5 .. ..... .... g... I....... I ... * *I..• •

No. 14 2.0 7.0 3.0 2.0 4.0 ........... I. 4

SI 5.0 0 4.0 0 0 1.0 Iteration No 28
S2 3.0 2.0 0 0 0 1.. . ....... I ....... I ....... .

2 .0 0....... 00...... ....... . ....... .......
S4.0 0 20 30 30 0 %.g...g.....I 'S4 6.0 0 - 2.0 3.0 0 I 0Fig. 8. Neural state transitions of the degenerate (simple sum)

(ci Hitchcock network (Figs. 6 and 7). Iterations 21-28 are shown.

73629j0
DI D2 1 D3 D4 D5
2.0 7.0 3.0 2.0 4.0

SI 5.0 0 5.0 0 0 0 AM

S2 3.0 2.0 0 0 0 1.0
S3 4.0 0 0 0 2.0 2.0
S4 6.0 0 2.0 3.0 0 1.0

(d) '3 '5. "- =

A. Energy Function
To use the spontaneous energy-minimization pro- WV ..

cess of the neural network, we reformulate the problem
in the form of a minimization problem by introducing %
an energy function that includes a term 0 0T-., k

Ily - HxI2 , (31) Fig. 9. Second example of the degenerate (simple sum) Hitchcock
network. A random initial state drove this network to find both of - .

so that the norm of the difference can be minimized the best solutions. ''he two-flow matrices are shown in Table 'll.
through the energy ininimization process. For our
later demonstRtioi of the Fourier transformation, we
allow y and H to take on complex values, but, for the element x,, of the unknown vector x by the group-and-
sake of simplicity, we restrict x to only positive integer weight scheme:
values, although we could include complex numbers by
using additional neurons labeled by a more complicat- X=" (M + W '- V,, -(321 b
ed set of subscripts. As in Eq. (21), we express the nth 7_"T
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Table VII. Flow Matrices for the Sp*ciie Numbos of oratios By equating the corresponding coefficients of Eqs. (33)
Correepording tothe Points hilcated on Fig. S and (34), we determine the interconnection strengths

DI D2 D3 D4 D5 and the biases:
No 3 2.0 7.0 3.0 2.0 4.0 4A(M + i)'.16,,,bkkA,,

Si 5.0 0 4.0 0 0 1.0 N

S2 3.0 2.0 1.0 0 0 0 - B(M + I)k+k - 
- hinh;n., (35)

S3 4.0 0 0 0 2.0 2.0
S4 6.0 0 2.0 3.0 0 1.0

(a) lk-DM+,= -2A(M + 1)k
-
. + B(M +N

X Re h;n)', • (36)

DI D2 D3 D4 D5

No. 1 8 2.0 7.0 3.0 2.0 4.0 Equation (31) includes the discrete Fourier transform

SI 5.0 0 5.0 0 0 0 as a special case with

S2 3.0 2.0 0 0 0 1.0 hin = expl-2rj(l - l)(n - 1)/NI, (37)
S3 4.0 0 0 0 2.0 2,0 rP ~
S4 6.0 0 2.0 3.0 0 1.0 and the inverse transform is computed by solving the

simultaneous linear equations.
(b) In this case, Eq. (35) takes a simple form due to the

orthogonality of the Fourier transform matrix:

Tn.(k-)M+i;n,.(k,_iDM+, = 4A(M + 1)k- 'nn'6kki
,

By substituting Eq. (32) into Eq. (31), we have an - BN(M + l)k+k2 bn. (38)
energy function

N K M

E -(A/2) (M + 1)k- I [I - 2V.._, -)M+,2 C. Numerical Experiments
.-I k-i i-1 Computations of the inverse Fourier transform were

N )Y N N programmed on the neural network, and the perfor-
+ (B/2) I y h-. hnx ) y - h;n'xn ,  mance was simulated on a digital computer. We used :I Y- ,signals with N = 15 sample points. Each sample point

xn was expressed by 24 neurons based on the simple
N K M sum scheme (M = 24, K = 1), so that 360 neurons were

= -(A/2) I I E (M + 1)- 11 - 2V,,(,_ M+,] employed in total. We adopted the differential asyn-
n-i k-1i-1 chronous transition mode and chose weight factors as

A = 28 and B = 1. In Fig. 10, (a) and (b) show,
N(B/2) NM + K respectively, an original signal x and its Fourier trans-E I nI I I = M + IM )k+k'-2h1nh; form y. (Only absolute values are shown in the figure.)

1-"n=1 n'1 k- k'1 -Ii'- The task given to the neural network is to compute x
* Vn. -)DM+,Vn,(,-DM+, from a given y.

N N K M Assuming no a priori knowledge, we started from the
-B E Y (M + 01 -) ReLv,hIVn.A-1M+, fuzziest initial states Vni = 0.5 shown in Fig. 10(c) and

1-1 n- k-1 i-1 got the result shown in Fig. 10(d) after only two itera-
tions. Another example is shown in Fig. 11, where we

N used an asymmetric signal and started from random
+ (B/2) Iyi ,  (33) initial states. Again after only two iterations we ob-

fri tained the result shown in Fig. 11(d). Although the

where, as in Eq. (22), the first term is for binarization, solutions obtained are not exact, the speed of computa-
y, and hi,, are elements of y and H, and * and Re[ J tion is impressive. In fact, this apparently enormous
denote complex conjugate and real part, respectively, speed of computation is quite misleading for reasons

that will be revealed in the following section.
B. Interconnection MatrixThe eergy uncton isnow odifid toVl. C.niputational and Programming Conplexlt1e .:.

The energy function is now modified to As has been demonstrated in Secs. IV and V, the
N K M N ' M computational speed of a neural network is very high,

- - Tsolutions (although not always exact) being obtained
k-" -I n - k- - -1 within several clock times (iterations). At present, we

X v.I I , .M IM+ do not know how the computation time (the number of
N K M iterations required) is related to the problem size (the

, N Vn ,I,i,,,r (34) number of neurons employed) and to the algorithm
n-i k-i ,-, (the choice of the interconnections). We conjecture
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0 383 that the computation time does not grow too rapidly
0 262
0 200 with problem size, because the greater the problem
0 0437 size, the more neurons participate in solving the prob-0 3.82 adcn

10 179 lem and the higher the parallelism used. If this con-
0 33.4 jecture is correct, the computation time is very short
20 400 for a properly programmed (interconnected) neural0 33.4
10 179 network, irrespective of the problem size. It may ap-

0 3.82 pear, then, that neural networks would be the compu-0 0 437
0 100 tation architecture of choice in most problems that can

0 26.2 be included within the energy minimization frame-
0 383 work. However, this conclusion is not correct. Al-

(b) though the computation time itself may be very short,
it may be necessary to invest very significant computa-
tion time simply to program the network, i.e., to deter-

12.0 0 mine the proper interconnection strengths and neural
120 0 biases. The situation is somewhat analogous to the
12.00
120 0 classical analog electronic computer for which a large
120 0 amount of time must be spent wiring the proper mod-12.0 , 0.0
2.0 00 ules together before any problem can be solved. Once

12.0 2 9.0 the modules are connected, a solution appears almost
12.0 2 immediately.12.0 1 I0 'mie

12.0 0

12.0 o A. Programming Complexity
12.0 0

12.0 0 By analogy with the concept of computational com-
12.0 0 plexity14,15 in digital computing, we introduce the con-

Ic) (d) cept of programming complexity in neural computing.
Fig. 10. Inverse DFT. The transition mode is differential asyn- We define programming complexity as the number of
chronous: (a) unknown signal; (b) known Fourier transform; (c) arithmetic operations that must be performed to de-
uniformly fuzzy initial states; (d) estimated signal after two itera- termine the proper interconnection strengths and neu-

tions. ral biases for the problem to be solved. Conventional
digital computers also need programming, but once

0 10.6 the program is compiled and stored in memory, it can
0 13.1 be used on many different sets of input data. For this
0 132

0 130 reason, the concept of programming complexity has
0 21.3 little significance in the world of conventional digital
20 34.6 __________coptr, porm ae
1 545 computers, where programs are completely separable %
0 50.0 from data. In neural network computers, a program .
5 45.8 and data are generally mixed and stored in the inter-
0 346 connection strengths and/or neural biases. For exam-
0 223 . .

0 130 ple, in Eq. (24), the first three terms represent part of
0 132 the program (since they do not depend on data), aid
0 131
0 106 the last term, including the costs Cxy, corresponds -,:

the data. Therefore, we must redetermine the inter-
(b) connection strengths and/or the biases each time we

use new data. In such an environment, the program-
0 ming complexity becomes an important measure of the

964 0 efficiency of neural computing. We know that it is not
11 4 0
126 0 meaningful to compare the efficiencies of conventional
136 0 digital computers and neural computers on the basis of
7.4 190 computational complexity and programming com-

13.7 140 plexity, because they mean different things. Digital
40 50 computers always give exact solutions (within the ma-10.8 ar

1605 chine precision) after performing the number of opera-
16 0 tions specified by the computational complexity,
127 0 whereas neural computers do not guarantee exact solu-

11 5 0 tions even if they are programmed by performing the
844 0 number of operations specified by the programming

Ic) Id) complexity. Nevertheless, a comparison of the com-
Fig. 11. lnverst DFT, second example: (a) unknown asymmetric putational complexity and the programming complex-
signal; (h) known Fourier transform; (c) random initial states; (d) ity does reveal certain interesting aspects of neural

estimated signal after two iterations. computing, as discussed in the following section.
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B. Simultaneous Equations that a great effort has been made by computer scien-
To solve simultaneous equations with N unknown tists to seek better algorithms and thereby reduce com- 0%

variables, we employed qN neurons, with q being the putational complexity. The same can be true with -"

number of neurons used to represent each unknown programming complexity in neural computing. The
variable. We consider q to be a constant factor, since Hitchcock problem provides a good example for dem-
it does not depend on N. The number of interconnec- onstrating good and poor algorithms (ways of intercon- %

tions is given by (1/2)qN(qN + 1) - O(N 2 ), and the nection) in terms of programming complexity. In Sec.
number of biases is qN - O(N). We need O(N) opera- IV, the Hitchcock problem with m sources and n de-
tions to determine each interconnection strength [see mands was solved by using qmn - 0(mn) neurons.
Eq. (35)] and each bias [see Eq. (36)], so that the Since Eqs. (24) and (25) include data Cxy, Sx, and Dy,
programming complexity is O(M). The computation- we have to redetermine (1/2)qmn(1 + qmn) - 0(m 2n2)

al complexity of this problem is also O(N3).14 This interconnection strengths and qmn - 0(mn) biases for
means that solutions of such a problem on either a each new set of data. Each interconnection strength
neural computer or a conventional digital computer and bias can be determined by a constant number of
would require essentially the same computational operations, so that the programming complexity is
load. In the case of the neural computer, the computa- given by 0(m 2n2) = 0(n 4) for m - n. In Sec. IV.B, we
tions must be expended to determine the interconnec- suggested an alternative definition of the energy func-
tion strengths and biases, while in the case of the tion that does not square the total cost in the last term
conventional digital computer the computations are of Eq. (22). If we use this new energy function, the
expended on solving the problem itself, interconnection strengths and biases become

This comparison is even more striking in the case of T-.(klM+: + 4A(M + 1)*-x6n,5kk.1

the Fourier transformation discussed earlier. Since - B(M + 1)-6X.

Eq. (38) contains no data terms, we need not recom- -'
pute the interconnection strengths for each different - C(M + ()3+9-2)yy,

set of data. The programming complexity comes only -A + +B +)
from computation of the term + C(M + 1)kS

+ O(M+ 1)1-'D,.

h - (1/2)D(M + 1)"lCx . (40)

Now the interconnection strengths do not depend on
in the biases, Eq. (36). Noting Eq. (37), we find that to the data CxY, and they need not be redetermined for
determine the proper biases, we must in fact compute each new set of data, so that the programming corn-
the very same inverse Fourier transform that the neu- plexity comes only from the biases, Eq. (40), and is
ral network was to find! Thus we have already arrived given by 0(mn) - 0(n

2 ) for m - n. This is a very
at the solution by the time we finish programming, and significant improvement. The computational com-
it is now no surprise the neural network supplies the plexity of the Hitchcock problem depends on the algo-
answer in only two interactions. The answer is in fact rithm used by a conventional digital computer. If we
preprogrammed into the machine! search for the best solution randomly among all the

possible combinations of the neural states, it becomes
C. Traveling Salesman Problemi ~2- _ 0(2mn). Even if we restrict the search to feasi-

In the previous section we saw an example in which ble solutions, it can still be exponential 0(nrm-lmn-). 1s

the programming complexity of a neural computer and Of course, these algorithms are worst extremes, and
the computational complexity on a conventional com- there exist several good algorithms that are in practical
puter are of the same order. The question naturally use. We do not know exactly what is the computation-
arises as to whether this is the case with all problems. al complexity of the best existing algorithm for the
If so, neural computing loses most of its attractiveness. Hitchcock problem, but we estimate it to be a low-
Hopfield and Tank's paper l3 on the traveling salesman order polynomial. If it is still higher than 0(mn),
problem provides the best example with which to an- neural computing can have an advantage for this prob-
swer this question. The computational complexity of lem.

*- the traveling salesman problem is an exponential func-
tion O(W) of the number of cities N. Hopfield and Fl lowilsionl " T wp

", Tank showed that the problem can be programmed on Following the lead of Hopfield and Tank, we pro-
a neural network with N 2 neurons that represent the posed an architecture for programming highly parallel %.

elements of a permutation matrix. We can show that computation on neural networks. In Sec. III, we de-
the programming complexity of this scheme is O(W). scribed number representation schemes based on lin-
This large difference of complexities makes neural ear mapping of the number space onto the neuron
computing very attractive, even though it does not space and pointed out the advantage of the degenerate
guarantee the best solution, number representation schemes. In Secs. IV and V,

the validity of the architecture was demonstrated by
C. Hitchcock Problem solving the Hitchcock problem and simultaneous lin-

Computational complexity in conventional digital ear equations on neural networks. The dynamics of
computing depends greatly on the algorithms used, so the neural network were simulated on a digital corn-
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puter. In Sec. VI, we introduced the new concept of Based on an Associative-Memory Model of Neural Nets with

programming complexity in neural computing, which Thresholding and Feedback," Opt. Lett. 10, 98 (1985).

was used to evaluate the computational efficiency of 5. G. Eichmann and H. J. Caulfield, "Optical Learning (Inference)

algorithms performed on neural networks. We com- Machines." App. Opt. 24, 2051 (1985).

pared the programming complexity with the worst case 6. H. Mada, "Architecture for Optical Computing Using Holo-
graphic Associative Memories," Appl. Opt. 24, 2063 (1985).

computational complexity, simply because the average 7. N. H. Farhat, D. Psaltis, A. Prata, and E. Paek, "Optical Imple-
complexity was too hard to estimate. However, we mentation of the Hopfield Model," Appl. Opt. 24, 1469 (1985).
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with average computational complexity, because they Emergent Collective Computational Abilities," Proc. Natl.
have a common characteristic that the solution is not Acad. Sci. 79, 2554 (1982).

always best or exact, even if we perform the number of 9. J. J. Hopfield, "Neurons with Graded Response Have Collective
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limitation to the class of problem that can be pro- 10. J. W. Goodman, A. R. Dias, and L. M. Woody, "Fully-Parallel
grammed and solved on the Hopfield neural network. High-Speed Incoherent Optical Method for Performing Dis-

crete Fourier Transforms," Opt. Lett. 2, 1 (1978).
This limitation comes from the requirement that the 11. See, for example, S. Amari, Mathematical Theory of Neural
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this requirement. Floating-point number representa- (Springer-Verlag, New York, 1980); K. Nakano, "Associatron- - .

tion is one such nonlinear problem. A Model of Associative Memory," IEEE Trans. Syst. Man Cy-
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This paper deals with a neural network model in which each neuron performs a threshold logic
function. An important property of the model is that it always converges to a stable state when
operating in a serial mode and to a cycle of length at most 2 when operating in a fully parallel
mode [3,4]. This property is the basis of the potential applications of the model, such as associative
memory devices and combinatorial optimization [5].

The paper reviews the two known convergence theorems (for serial and fully parallel modes
of operation) and presents a general convergence theorem which unifies the two known cases.
The paper also presents some new applications of the model for combinatorial optimization. In
particular, new relations between the neural network model and the problem of finding the Minimum
Cut in graph are presented.

1 Background

The neural network model is a discrete time system that can be represented by a weighted and
undirected graph. There is a weight attached to each edge of the graph and a threshold value
attached to each node (neuron) of the graph. The order of the network is the number of nodes in
the corresponding graph. Let N be a neural network of order n; then N is uniquely defined by
(W,T) where:

* W is an n x n symmetric matrix, where Wi is equal to the weight attached to edge (i, j).

" T is a vector of dimension n, where Ti denotes the threshold attached to node i.

Every node (neuron) can be in one of two possible states, either 1 or -1. The state of node i at
time t is denoted by V(t). The state of the neural network at time t is the vector V(t).

The next state of a node is computed by:

1 if Hi(t) >0
V,(t + 1) = sgn(Ji'(t)) = -1 otherwise (1)

I1

4F,



where

Hi(t) = Wi,,V(t) - T,
j= 1

The next state of the network, i.e. V(t + 1), is computed from the current state by performing
the evaluation (1) at a set S of the nodes of the network. The modes of operation are determined
by the method by which the set S is selected in each time interval. If the computation is performed
at a single node in any time interval, i.e. I S 1= 1, then we will say that the network is operating in
a serial mode, and if I S J= n then we will say that that the network is operating in a fully parallel
mode. All the other cases, i.e. 1 <1 S j< n will be called parallel modes of operation. The set S
can be chosen at random or according to some deterministic rule.

A state V(t) is called stable iff V(t) = sgn(WV(t) - T), i.e. there is no change in the state of
the network no matter what the mode of operation.

2 Convergence Theorems

One of the most important properties of the model is the fact that it always converges, as summa-
rized by the following theorem.

Theorem 1 Let N = (W,T) be a neural network, with W being a symmetric matrix then:

1. (Hopfield [4]) If N is operating in a serial mode and the elements of the diagonal of W are
nonnegative then the network will always converge to a stable state, i.e. there are no cycles
in the state space.

2. (Goles [3]) If N is operating in a fully parallel mode then the network will always converge to
a stable state or to a cycle of length 2, i.e. the cycles in the state space are of length < 2.

The main idea in the proof of the two parts of the theorem is to define a so called energy
function and to show that this energy function is nondecreasing when the state of the network
changes. Since the energy function is bounded from above it follows that the energy will converge
to some value. An important note is that originally the energy function was defined such that it
is nonincreasing [3,4]; we changed it to be nondecreasing such that the value of the energy will
comply with some known graph problems (e.g. Min Cut, see next section).

The second step in the proof is to show that constant energy implies in the first. case a stable
state, and in the second a cycle of length < 2. The energy functions defined for each part of the
proof are different,

El(t) = vT(t)WV(t) - (V(t) + V(t))TT
E2 (t) = VT(t)WV(t - 1) - (V(t) + V(t- l))'T (2)

where EI(t) and E2(t) denote the energy functions related to the first and second part of the proof.
An interesting question is whether two different energy functions are needed in order to prove

the two parts of theorem 1. A new result is that convergence in the fully parallel mode can be
proven using the result on convergence for the serial mode of operation.
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The following lemma will describe a general result which enables transformation of a neural
network with nonnegative self loops operating in a serial mode to an equivalent network without
self loops (part a), and also enables transformation of a neural network operating in a fully parallel
mode to an equivalent network operating in a serial mode (part b ). The equivalence is in the sense
that it is possible to derive the state of one network given the state of the other network, provided
the two networks started from the same initial state.

Lemma 1 Let N = (W, T) be a neural network.
Let N = ( , T) be obtained from N as follows:

Nis a bipartite graph, withW (0 andii' (T
Claims:

(a) For any serial mode of operation in N there exists an equivalent serial mode of operation in
N ; provided W has a nonnegative diagonal.

(b) There exists a serial mode of operation in N which is equivalent to a fully parallel mode of
operation in N.

Proof: The new network _N is a bipartite graph with 2n nodes, the set of nodes of N can be
subdivided into two sets: let P, and P2 denote the set of the first and the last n nodes, respectively.
Clearly, no two nodes of P, (and also P2) are connected by an edge; that is, both P, and P2 are
independent sets of nodes in N (an independent set of nodes in a graph is a set of nodes in which
no two nodes are connected by an edge). Another observation is that P and P2 are symmetric in
the sense that a node i E P has an identical edge set as has a node (i + n) e P2 .

Proof of (a): Let V0 be an initial state of N, and let (il, i2 ...) be the order by which the states
of the nodes are evaluated in a serial mode in N. We will show that starting from the initial state
(V0, Vo) in N (the state of both P and P2 is V0 ) and using the order (ij, (ij + n), i2, (i2 + n),. ....)
for the evaluation of states will result in:

1. The state of P will be equal to the state of P2 in N after an arbitrary even number of
evaluations.

2. The state of N at time k is equal to the state of P at time 2k, for an arbitrary k.

The proof of (1) is by induction. Given that at some arbitrary time k the stat of P is equal to
the state of P2 , it will be shown that after performing the evaluation at node aid then at node
(n + i) the states of P and P2 remain equal.

There are two cases:

* If the state of node i does not change as a result of evaluation, then by the symmetry of N
there will be no a change in the state of node (n + i).

* If there is a change in the state of node i, then because Wim+i is nonnegativ, it follows that
there will be a change in the state of node (n + i) (the proof is straightforward and won't be
presented).
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The proof of (2) follows from (1): by (1) the state of P, is equal to the state of P-1 right before the
evaluation at a node of P-. The proof is by induction: assume that the current state of N is the

same as the state of P, in R . Then an evaluation performed at a node i E Pi will have the same

result as an evaluation performed at node i E N. r0
Proof of (b): Let's assume as in part (a) that N has the initial state (V0, V0). Clearly,

performing the evaluation at all nodes belonging to P, (in parallel) and then at all nodes belonging
to P2, and continuing with this alternating order is equivalent to a fully parallel mode of operation
in N. The equivalence is in the sense that the state of N is equal to the state of the subset of
nodes (either P or P2) of R at which the last evaluation was performed. A key obser v ation is that

P and P are independent sets of node i E 0s
is equivalent to a serial evaluation of all the nodes in the set [1]. Thus, the fully parallel mode of
operation in N is equivalent to a serial mode of operation in R. 0

Using the transformations suggested by the above lemma it is possible to explore some of the
relations between convergence properties as summarized by the following theorem.

Theorem 2 Let N = (W, T) be a neural network.
Then (2) and (3) are implied by (1).

1. If N is operating in a serial mode and W is a symmetric matrix with zero diagonal, then the
network will always converge to a stable state.

2. If N is operating in a serial mode and W is a symmetric matrix with nonnegative elements
on the diagonal, then the network will always converge to a stable state.

3. If N is operating in a fully parallel mode then, for an arbitrary symmetric matrix W, the
network will always converge to a stable state or a cycle of length 2; that is, the cycles in the
state space are of length < 2.

Proof: The proof is based on lemma 1.
(2) is implied by (1): by lemma I part (a) every neural network with nonnegative diagonal

matrix W which is operating in a serial mode can be transformed to an equivalent network to be
denoted by N which is operating in a serial mode with W being a zero diagonal matrix. NV will
converge to a stable state (by (1)); hence, N will also converge to a stable state which will be equal
to the state of P1 . Note that trivially (1) is implied by (2). 01

(3) is implied by (1): by lemma 1 part (b) every neural network operating in a fully parallel
mode can be transformed to an equivalent neural network to be denoted by N which is operating
in a serial mode and with V being a zero diagonal matrix. N will converge to a stable state (by
(1)). When N reachs a stable state there are two cases:

1. The state of P is equal to the state of P2 ; in this case N will converge to a stable state which
is equal to the state of P1.

2. The states of P and P2 are distinct; in this case N will oscillate between the two states
defined by P, and P2 , i.e. N will converge to a cycle of length 2. 0

It is also interesting to investigate the relations between the two energy functions in a neural
network operating in a fully parallel mode or in a serial mode. New results concerning this question
are summarized in the following theorem.

4

WIS



A

Theorem 3 Let N = (W,T) be a neural network. Then:

(a) For N operating in a serial mode, and for all t:
E (t - 1) _< E2(t M_ El(t)

(b) For N operating in fully parallel mode, and for all t:
E2 (t) > El(t- 1)
E2(t) _ EI(t) when the network is in a cycle of length two.
E2(t) < EI(t) when the network is in a stable state.

Proof: The proof of theorem 3 can be done by straightforward algebraic operations. It turns
out that theorem 3 can also be proven by using Lemma 1 and the fact that the energy E l is
nondecreasing in a network operating in a serial mode (Theorem la). We include a sketch of the
alternative proof to emphasize the power of Lemma 1 for understanding the relations between the
two energy functions and the two modes of operation. In the following proofs we will use the
notations established in Lemma 1.

e Proof of part a:

Perform the transformation of N to N; there is a way to simulate a serial operation in N
by a serial operation in N (as suggested by Lemma la) provided that W is a nonnegative
diagonal matrix.

Look at the energy El of N to be denoted by El. By Theorem la:

EI(t) = Ei(2t)
p Also,

E2 (t+ 1) = kj(2t+ 1)
Since * is operating in a serial mode it follows that E1 is nondecreasing. 0

e Proof of part b:
The key idea in the proof is the simple observation that if a state with energy ! 1 (t + k) can
be reached from a state with energy ki(t) in k serial iterations; then it follows that ki(t) <
E(t+k). IfP and P2 in N have the same state as N at time t then !,(t) = E,(t). Clearly,
performing one parallel iteration in N and on P in N will result in E2(t + 1) = E(t + 1).
Hence, E2(t + 1) > EI(t) for every value of t when N is operating in a paraLiel mode.
If N is in a cycle of length 2 then Ei(t) E2(t); by using the same arguments as above it
follows that E 2 (t) > EI(t).
If N enters a stable state at time t, then El(t - 1) = E2 (t) and also E 1(t) = EI(t); thus, it
follows that E 2(t) << EI(t). 0

Some remarks regarding the above analysis:

1. In a network operating in a serial mode, both El and E2 are nondecreasing. Furthermore, a
very interesting result (theorem (3) part (a)) is that the values of El and E2 are interleaving.

2. The assumption of W being a nonnegative diagonal matrix is used to derive results for a
network operating in a serial mode only.

3. In a network operating in a fully parallel mode El is not necessarily nondecrL .ing; it can be
shown that a sufficient condition for El to be nondecreasing is that IV is non'egative definite
over the range (-1,0,1).
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3 Application to Combinatorial Optimization

Theorem la implies that a neural network, when operating in a serial mode, will always get to
a stable state which corresponds to a local maximum in the energy function El. This property
suggests the use of the network as a device for performing a local search algorithm for finding a
maximal value of the energy function E1 [5]. The value of E1 which corresponds to the initial state
is improved by performing a sequence of random serial iterations until the network reaches a local
maximum.

From Theorem lb it follows that when the network is operating in a fully parallel mode it will
always reach a stable state or a cycle of length 2. The value of the energy E 2 at these final points
is clearly maximal with respect to the path in the state space which ends in these points. In the
fully parallel case there is no randomness in the search, because there is no choice in the direction
of improvement as in a serial operation. Actually, a network operating in a fully parallel mode is
performing a deterministic mapping from the set of initial states to the set of final states (stable
states and cycles of length 2). A random local search can be performed by using the construction
suggested by Lemma 1.

One of the advantages of the construction suggested by Lemma 1 is that the state space of a
network operating in a fully parallel mode can be transformed from a forest like graph to a 2n-cube.
This transformation enables the use of the network for performing a random and local search for
the maximum of a function of the form of E2 .

To summarize, given a quadratic function of the form E1 or E 2 , it is possible to construct a
neural network which will perform a random local search for the maximum.
The class of optimization problems which can be represented by quadratic functions is very rich.
One of the problems which is not only representable by a quadratic function but actually is equiv-
alent to it is the Min Cut problem [1,6].

In the sequel, we will present (without proof) the equivalence between the Min Cut problem and
neural networks (Theorems 4 and 5), and also show how neural networks relate to the Directed Min
Cut problem (Theorem 6). In order to make the above statements clear, let us start by defining
the term cut in a graph.

Definition: Let G = (V, E) be a weighted and undirected graph, with W being an n x n symmetric
matrix of weights of the edges of G. Let V1 be a non empty subset of V, and let V-,I = V - V1 . A
set of edges each of which is incident at one node in V and at one node in V- 1 is called a cut of the
graph G. The Min Cut of a graph is the cut for which the sum of the corresponding edge weights

* is minimal.

Theorem 4 Let N = (W,T) be a neural network with W being an n x n zero diagonal matrix.
Let G be a weighted graph with (n + 1) nodes, with its weight matrix IVG being:

WG Tr 0

The problem of finding the state V in N for which E1 is maximum is equivalent to finding the
Min Cut of the corresponding graph G.

The above theorem can also be generalized to show that the difference between energy values
corresponding to two different states of a network is also equal to a cut in a graph. The following
theorem summarizes this interesting relation.
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Theorem 5 Let N = (W, T) be a neural network with T = 0. Let V and V2 be two arbitrary states
of N. Let N(V) be a network obtained from N by modifying W as follows:

modified Wij = Wi,jV,iV,j (3)

Then:
EI(Vi) - EI(V2) = 2 x (cut of N(V1))

A few remarks concerning the above relation:

1. Theorem 4 is a special case of theorem 5; simply choose V to be the all-i vector.

2. Theorem 5 suggests an iterative method for improving the value of the current local maximum
as follows:

(a) Perform the search until reaching a Iccal maximum.

(b) Modify the weights of the network according to (3), go to (a).
Clearly, we will get an improvement in each iteration as long as the new maximal value of
the energy function is positive.

The Min Cut problem is known to be NP-hard [2]. The problem is solvable in polynomial time
(by flow techniques) if the weights of the graph are nonnegative, and also there is a set of special
cases (e.g. planar graphs) for which a polynomial algorithm is known.

The importance of the relation between the Min Cut problem and neural networks is in the fact
that the Min Cut problem can be viewed as a generic graph problem which can be mapped to the
model. Thus, theoretically one can transform every NP-complete problem to the Min Cut problem
and use the corresponding neural network to perform a local search algorithm.

The relation to the Min Cut problem also leads to the following nice interpretation of a serial
*iteration in a neural network. The computation performed at a node k is equivalent to deciding

what will be the next position of node k with respect to the current cut (state) of the network.
The decision is performed by comparing the sum of weights of the edges which belong to the cut
and incident at node k with the sum of weights of the other edges which are incident at node k.

In each serial iteration the value of the cut goes down; thus, the corresponding energy value
goes up. This is actually a simple proof for the convergence in the serial mode of operation.

From the above equivalence it follows that the Min Cut problem in an undirected graph is
trivially mapped to a neural network. What about directed graphs: is it possible to design a neural
network which will search for a solution for the Directed Min Cut (DMC) problem [1]? It is shown
in Theorem 6 that it is possible to map the DMC problem to a neural network which will perform
a local search.

Definition: Let G = (VE) be a weighted and directed graph. Each edge has a direction and

a weight. The weights of the directed edges (arcs) can be represented by an n x n matrix IV
in which Wij is the weight of the arc from i to j. Let V be a non empty subset of V, and let
V- 1 = V - V1. The set of arcs each of which has its tail at a node in V and its head at a node in
V- 1 is called a directed cut of G.

7



Theorem 6 [1] Let G = (VE) be a weighted directed graph with W being the matrix of its edge

weights (W is not necessarily symmetric). The network N = (W, T) performs a local search for

the Directed Min Cut of G where:

=vi iff.j + wji)
-1 '

Tk = 2 Z(Wi - Wik)
i=1
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This paper deals with a neural network model in which each neuron performs a threshold logic
function. An important property of the model is that it always converges to a stable state when
operating in a serial mode [1,4]. This property is the basis of the potential applications of the
model such as associative memory devices and combinatorial optimization [2,5].

One of the motivations for use of the model for solving hard combinatorial problems is the fact
that it can be implemented by optical devices and thus operate at a higher speed than conventional
electronics.

The main theme in this work is to investigate the power of the model for solving NP-hard
problems [3], and to understand the relation between speed of operation and the size of a neural
network. In particular, it will be shown that:

1. A network with polynomial (in the size of the input) number of neurons can not solve an
NP-hard problem even if it operates for an exponential length of time (unless NP = co-NP).

2. A network with polynomial (in the size of the input) number of neurons which always gets
to an c-approximate solution for the Traveling Salesman Problem (TSP) [3,5] does not exist
unless P=NP.

The above results are of great practical interest, because right now it is possible to build neural
networks which will operate fast but are limited in the number of neurons.

1 Background

The neural network model is a discrete time system that can be represented by a weighted and
undirected graph. There is a weight attached to each edge of the graph and a threshold value
attached to each node (neuron) of the graph. The order of the network is the number of nodes in
the corresponding graph. Let N be a neural network of order n; then N is uniquely defined by
(W,T) where:

" W is an n x n symmetric matrix, where Wij is equal to the weight attached to edge (i, j).

" T is a vector of dimension n, where T denotes the threshold attached to node i.
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Every node (neuron) can be in one of two possible states, either 1 or -1. The state of node i at
time t is denoted by V(t). The state of the neural network at time t is the vector V(t).

The next state of a node is computed by:

+ 1) = sgn(Hi(t)) = 1 if Hi(t) _O

(t + ,= n ) -1 otherwise (1)

where

Hi(t) = WjiVj(t) -
.7=1

The next state of the network, i.e. V(t + 1), is computed from the current state by performing
the evaluation (1) at a set S of the nodes of the network. The modes of operation are determined
by the method by which the set S is selected in each time interval. If the computation is performed
at a single node in any time interval, i.e. I S J= 1, then we will say that the network is operating in
a serial mode, and if I S J= n then we will say that that the network is operating in a fully parallel
mode. All the other cases, i.e. 1 <1 S 1< n will be called parallel modes of operation. The set S
can be chosen at random or according to some deterministic rule.

A state V(t) is called stable iff V(t) = sgn(WV(t) - T), i.e. there is no change in the state of
the network no matter what the mode of operation. One of the most important properties of the
model is the fact that it always converges to a stable state while operating in a serial mode. The
main idea in the proof of the convergence property is to define a so called energy function and to
show that this energy function is nondecreasing when the state of the network changes. The energy
function is:

E(t) = VT(t)WV(t) - 2VT(t)T (2)
An important note is that originally the energy function was defined such that it is nonincreasing
[4]; we changed it such that it will comply with some known graph problems (e.g. Min Cut).

A neural network will always get to a stable state which corresponds to a local maximum in
the energy function. This suggests the use of the network as a device for performing a local search
algorithm for finding a maximal value of the energy function [5]. Thus, the network will perform
a local search by operating in a random and serial mode. It is also known [1,7] that maximization
of E associated with a given network N in which T = 0 is equivalent to finding the Minimum Cut
in N. Actually, many hard problems can be formulated as maximization of a quadratic form (e.g.
TSP [5]) and thus can be mapped to a neural network.

2 The Main Results

The set of stable states is the set of final solutions that one will get using the above approach.
These final solutions correspond to local optima in the corresponding problem. The main question
is: suppose we allow the network to operate for a very long time until it converges; can we do
better than just getting some local optima? i.e., is it possible to design a network which will find
the exact solution (or some guaranteed approximation) ?

In particular the following two questions are addressed:
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1. Let L be an instance of an NP-hard problem; suppose that there exists a way to map L to
a neural network NL such that every local maximum of the energy function corresponds to
a global optimum of the problem L. Clearly, the network will run for an exponential (in the

input size) amount of time (worst case) until it will reach a stable state which corresponds to

a solution of the problem.
The question is: does there exist such a network NL which has only polynomial (in the size
of the input to L) number of neurons? The question is interesting because it is "known" how
to build networks which will work very fast but are limited in the number of neurons.

2. Investigating the special case of the Traveling Salesman Problem (TSP) [3,5,6].

Let EgIo be the energy value of the global maximum, and let Et,, be the energy value of
a local maximum, we will say that the local maximum is an c-approximate solution to the

problem iff:

Egio - Elo<

EgIo

The question is: can we design a neural network which has a polynomial (in the size of
the input) number of neurons in which the energy value of every local maximum is an c-
approximate of the solution to a given instance of TSP? That is, is it possible to design a
neural network which will solve the TSP with some guaranteed approximation?

The main results in the paper are the answers to the above questions:

1. The answer to the first question is NO; more formally:

Proposition 1 The existence of a polynomial size neural network for solving an NP-hard
problem will imply that NP = co-NP.

2. The answer to the second question is NO; more formally:

Proposition 2 The existence of a polynomial size neural network for finding an c-approximate
solution to the TSP will imply that P=NP.

The key observation for proving the above propositions is the fact that a single iteration takes
time which is a polynomial in the number of neurons and in the size of the input to the corresponding
problem. The proofs for the above two propositions rely on known results from complexity theory
and the theory of local search algorithms (see [6] chapters 16,19).
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